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Abstract— This paper considers a class of stochastic source
seeking problems to drive a mobile robot to the maximizer of
a source signal by only using measurements of the signal at
the robot location. Our algorithm builds on the simultaneous
perturbation stochastic approximation idea to obtain informa-
tion of the signal field. We prove the practical convergence of
the algorithm to a ball of size depending on the step-size that
contains the location of the source. The novelty of our approach
is that we consider nondifferentiable convex functions, a fixed
step-size, and the environment can be restricted to any compact
convex set. Our proof methods employ nonsmooth Lyapunov
theory, tools from convex analysis and stochastic difference
inclusions. Finally, we illustrate the applicability of the proposed
algorithm in a 2D scenario for the source seeking problem.

I. INTRODUCTION

Source seeking algorithms are used in mobile robotics for
reaching the source of a radiation-like signal when position
measurements are not available. Applications range from
biology, in understanding bacterial foraging, to security, for
rescue operations and chemical detection. In a typical sce-
nario, the robot takes measurements of the signal emitted by
the source by exploring the environment through a stochastic
motion. This information is used to navigate and climb the
gradient of the signal field, where the signal field might
represent the spatial distribution of magnetic force, thermal
signal, or chemical concentration.

Our approach is inspired by the simultaneous perturbation
stochastic approximation (SPSA) method. The SPSA algo-
rithm is a well-known method for estimating the gradient
from noisy measurements of a cost function. It was originally
proposed in [1] and has been successfully applied in many
optimization problems like statistical modeling, parameter
estimation, simulation optimization, and stochastic optimiza-
tion. The original SPSA algorithm assumes a monotonically
decreasing step-size, which for practical implementation in
mobile robots is not an option, since it is impossible to
navigate with infinite precision, which is the case when the
step-size is converging to zero. Therefore, we propose a
modified version of the SPSA algorithm which uses a small,
but constant step-size in a constrained environment.

Literature review. There are many approaches to stochastic
source seeking for mobile robots in GPS-denied environ-
ments such as the application of the extremum seeking
framework to nonholonomic vehicles as in [2], or the ap-
plication of the SPSA algorithm to mobile robots in [3], [4].
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We follow the approach of [3], where the authors design a
controller to drive a robot to the source by applying the SPSA
algorithm without the use of the position information. The
algorithm they propose uses standard assumptions found in
SPSA in the literature such as thrice differentiability of the
cost function and monotonically decreasing step-size. Those
assumptions fit very well in many applications where direct
measurements of the gradient are not available. However, in
some applications, a decreasing step-size is not an option.
An alternative is to use a small, but constant step-size,
which has been successfully applied in applications such as
optimization of combustion control [5], mobile robots [4],
and tracking and adaptive control [6]. In [5], a variation
of the SPSA algorithm is proposed which decreases the
oscillation against the constraints. The proposed algorithm
is applied to an automotive combustion engine problem.
Although [5] uses a constant step-size, no theoretical guar-
antees are given for fixed step-size. In [4], a model-free
algorithm is proposed based on stochastic approximation to
find a source in environments with obstacles, which uses
a constant step-size. A decreasing step-size is not desirable
because the robot might get trapped in a location where the
magnitude of the gradient is small. The convergence of the
algorithm in [4] is implemented in a real world scenario.
However, its convergence is not proven theoretically. In [6],
an algorithm inspired by SPSA is proposed for unconstrained
optimization. The algorithm uses a constant step-size to
minimize a cost function for tracking problems. A drawback
is that the cost function is assumed to be once differentiable
and it solves an unconstrained optimization problem.

Statement of contributions. We propose a stochastic source
seeking algorithm to drive a robot to an unknown source
signal by only using measurements of the signal field. Our
algorithm builds on the SPSA algorithms of [1] and [3]. The
novelty of our approach is that we consider nondifferentiable
convex functions, fixed step-size, and the environment can be
any compact convex set. We prove practical convergence to a
ball and whose size depends on the step-size that contains the
location of the source. For the proof, we use Lyapunov theory
together with tools from convex analysis, and stochastic
difference inclusions. Our proof does not rely on stochastic
approximation theory as is usually the case for algorithms in
the literature based on SPSA.

II. PRELIMINARIES

This section presents notation, notions of convex analysis,
and stochastic stability theory that are used in the sequel.
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A. Notation

We denote by Z≥0 the set of nonnegative integers, Z>0

the set of positive integers, Rn
>0 the positive orthant of Rn,

for some n ∈ Z>0, and In the identity matrix of size n×n.
When a vector x ∈ R

n is composed of nonzero elements, we
define the elementwise inverse as x−1 , [x−1

1 , . . . , x−1
n ]⊤.

The two-norm of a vector is denoted by ‖.‖. A function
is f is o(h), and we write f(x) = o(h(x)) as x → x0,
to mean that limx→x0

f(x)
h(x) = 0. A function f is O(h),

and we write f(x) = O(h(x)) as x → x0, if there exists
δ,M ∈ R>0 such that ‖f(x)‖≤M‖h(x)‖ for ‖x−x0‖≤ δ.
For a closed set S ⊂ R

n and x ∈ R
n, |x|S= infy∈S |x−y| is

the Euclidean distance to S. A function φ : Rn → R is upper
semicontinuous if lim supi→+∞ φ(xi) ≤ φ(x) whenever
limi→+∞ xi = x. Given two sets S and T , a set-valued map,
denoted by h : S ⇉ T , associates an element of S with a
subset of T . The symbol IS(x) denotes the indicator function
of IS , i.e., IS(x) = 1 for x ∈ S and IS(x) = 0 otherwise. A
set-valued map M : Rp ⇉ R

n is outer semicontinuous if, for
each sequence (xi, yi) → (x, y) as i→ +∞, in ∈ R

p ×R
n,

and satisfying yi ∈ M(xi) for all i ∈ Z≥0, it holds that
y ∈ M(x). A mapping M is locally bounded if, for each
bounded set K ⊂ R

p, M(K) , ∪x∈KM(x) is bounded.

B. Convex analysis notions

The notions we introduce here follow [7], [8]. Let f :
R

n → R be a closed, proper, and convex function. The
subgradient of f is the set-valued map ∂f : R

n ⇉ R
n

defined by the subgradient set ∂f(x) = {ξ ∈ R
n | f(x′) ≥

f(x) + ξ⊤(x′ − x)}. We refer to df(x) as the semi-
derivative function, which is the support function of the
nonempty, compact, and convex set ∂f(x), i.e., df(x)(w) =
sup{ξ⊤w | ξ ∈ ∂f(x)}. The first order expansion of f for
any point x is given by

(1)f(x+ w) = f(x) + df(x)(w) + o(‖w‖).

We say that f satisfies the superquadratic growth condition
if there exists ρ > 0 such that

(2)f(y) ≥ f(x) + df(x)(y − x) +
ρ

2
‖y − x‖2,

for x, y ∈ R
n. In particular a strongly convex function

satisfies (2). When f is differentiable, satisfying (2) is
equivalent to assuming that ρIn ≤ ∇2f(x) for x ∈ R

n.

C. Stability for stochastic difference inclusions

The notions we introduce here follow [9]. Consider a
discrete-time, stochastic difference inclusion

(3)x+ ∈ Hα(x, v
+), v ∼ µ,

where x+ is the state after an instantaneous change, Hα :
R

n × R
m ⇉ R

n is a set-valued map for some n,m ∈ Z>0

parameterized by α ∈ R>0, which assigns non-empty set
values, and x ∈ R

n is the state. The notation v+ and v
refers to sequences of random input variables as explained
next. Consider a complete probability space (Ω,F ,P), where
Ω denotes the set of all possible outcomes, F is the σ-
field associated with Ω, and P is the probability function

that assigns a probability to events in F . In particular,
we assume B(Rm) ⊆ F , where B(Rm) is the Borel
field. In (3), we use v+ and v as a place holder for
a sequence of independent, identically distributed (i.i.d.)
random variables v , {vk}

∞
k=0, that is, P(vk ∈ F ) =

P({w ∈ Ω | vk(w) ∈ F}) is well defined and independent
of k for each F ∈ B(Rm). We use Fk to denote the
collection of sets {w ∈ Ω | (v0(w), . . . ,vk(w)) ∈ F},
F ∈ B((Rm)k+1), which are the sub-σ-fields of F that
form the minimal filtration of the sequence v. Due to the
i.i.d property, each random variable has the same probability
measure µ : B(Rm) → [0, 1] defined as µ(F ) , P(vk ∈ F )
and, for almost all w ∈ Ω, E[f(v0, . . . ,vk,vk+1)|Fk](w) =
∫

Rm f(v0(w), . . . ,vk(w), v)µ(dv), for each k ∈ Z≥0 and
each measurable f : (Rm)k+2 → R.

The sequence of random variables x , {xk}k≥0, where
xk : domxk ⊂ Ω → R

n, k ∈ Z≥0 with x0 = x for
all w ∈ Ω and domxk+1 ⊂ domxk , is called a random
process starting at x ∈ R

n. We say that x is adapted to the
natural filtration of v if xk+1 is Fk measurable for each
k ∈ Z≥0, i.e., x

−1
k+1(F ) ∈ Fk for each F ∈ B(Rm). A

random process x starting from x ∈ R
n and that is adapted

to the natural filtration of v, together with a random variable
Jx : Ω → Z≥0 ∪ {∞} (which denotes the number of
elements in the sequence x) is a random solution of (3)
starting at x ∈ R

n, denoted as x ∈ S(x), if x0 = x,
xk+1(w) ∈ Hα(xk(w),vk+1(w)) for all w ∈ domxk+1 ,

{w ∈ Ω | k + 1 ≤ Jx} and k ∈ Z≥0. We impose the
following regularity condition on H.

Assumption 1: H is locally bounded and v →
graph(Hα(·, v)) , {(x, y) ∈ R

n × R
n | y ∈ Hα(x, v)} is

measurable with closed values.
Definition 1: (MSP-ES): We say that the equilibrium point

of (3) is mean-square practically exponentially stable (MSP-
ES) if there exists α∗ ∈ (0, 1), positive real numbers β,
λ < 1

α∗ , γ and η, such that for all α ∈ (0, α∗] and for all
k ∈ Z≥0, we have E[‖xk‖

2] ≤ β(1− αλ)k‖x0‖
2+γαη.

Proposition 1: ([10]): Consider the system (3) under As-
sumption 1. If there exists an upper semicontinuous function
V : Rn → R≥0, positive constants c1, c2, λ,K , α∗ ∈ (0, 1),
and η > 1, such that for all α ∈ (0, α∗)

c1‖x‖
2 ≤ V (x) ≤ c2‖x‖

2,

(4)
∫

Rm

max
h ∈Hα

V (h)µ(dv) ≤ (1 − αλ)V (x) + αηK,

then, the equilibrium point is MSP-ES for (3). •

III. PROBLEM STATEMENT

This section describes the source seeking problem for
GPS-denied environments which has been proposed in
e.g. [2], [3], and [4]. We follow the approach of [3], except
for the fact that we consider boundaries in the environment.
Suppose that a point robot (or sufficiently small disc) moves
in R

n and its motion is described in the world coordinate
frame by

(5)[ṗ, θ̇, φ̇]⊤ = G(p(t), θ(t), φ(t))u(t),
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where G : Rn ×R
n1 ×R

n2 → R
(n+n1+n2)×m is a function

describing the robot dynamics, p(t) ∈ R
n and θ(t) ∈ R

n1

are the translational and orientational positions in the world
of coordinate frame, φ(t) ∈ R

n2 and u(t) ∈ R
m are the

internal posture and the control input, respectively.
Let E be the environment where the robot moves, which

is assumed to be convex and compact. A tower broadcasts a
signal, which is modeled by an intensity function f over
R

n. Let f denote the signal mapping f : R
n → R, in

which f(p) yields the intensity at p ∈ R
n, generated from

a tower at p∗. The location of the tower p∗ can be or not
in E . The environment E and even the signal mapping f are
unknown to the robot. The robot aims to solve the following
optimization problem

(6)min
p ∈E

E[f(p)|p],

by only using measurements of f(p(t)). Furthermore, the
robot does not know its own position and orientation. We are
interested determining an algorithm with guaranteed practical
convergence to a small ball containing the solution of (6)
given by p∗. When p∗ /∈ E the robot should converge in prac-
tical way to a ball containing the closest point from E to p∗.
First, we assume a contact sensor lE(p) indicates whether the
robot is touching the environment boundary (or any obstacle
inside the environment) ∂E at the position p. Second, the
robot is equipped with an intensity sensor, which indicates
the strength of the signal from position p, i.e., lI(p) = f(p).
Since the robot does not have position information in the
coordinate frame, it is necessary to adapt (5) to a body fixed
frame. The frame at time τ is given by





z(t)
ψ(t)
ϕ(t)



 =





R(−θ(τ))(p(t) − p(τ))
θ(t)− θ(τ)

φ(t)



 ,

where t expresses a future time after τ , (z(t), ψ(t), ϕ(t)) ∈
R

n ×R
n1 ×R

n2 are the new coordinates, and R(−θ(τ)) is
the rotation matrix of an angle −θ(τ).

IV. PROPOSED ALGORITHM

This section assumes that there are no obstacles in E ,
where E is described by a convex compact set. To find
the tower p∗, we propose the following algorithm, which
is similar in spirit to SPSA algorithm for fixed step-size:

(7)pk+1 = ΠE [pk − αg(pk, δ(pk, Rkvk), Rk, vk)],

where k ∈ Z≥0. To simplify the notation for aid in analysis,
we write the above algorithm as a discrete-time dynamical
system as follows p+ = ΠE [p−αg(p, δ(p,Rv), R, v)], where
p ∈ R

n is the current state, p+ ∈ R
n is the state at the next

time step, ΠE is the projection on a convex compact set E ,
and g : Rn × R

2 × SO(n)× R
n → R

n is given as:

g(p, δ(p,Rv), R, v) =
{

R f(p+δ1Rv)−f(p−δ2Rv)
δ1+δ2

v−1, if δ1 + δ2 > 0,

0, otherwise.

Here, f : Rn → R is the function to be minimized, α ∈ R>0

is the step-size, R ∈ SO(n) is the uncertain time-varying

rotation matrix (by definition is an orthogonal matrix), and
δ = (δ1, δ2), δi : Rn × R

n → R≥0, i ∈ {1, 2}, defined as

δ1(p,Rv) =

{

δ̄1, if p+ δ̄1Rv ∈ E ,

dist+Rv(p, ∂E), otherwise,

δ2(p,Rv) =

{

δ̄2, if p− δ̄2Rv ∈ E

dist−Rv(p, ∂E), otherwise,

where δ̄1, δ̄2 ∈ R≥0 are given constants satisfying δ̄1 + δ̄2 >
0, dist±Rv(p, ∂E) is the distance between the point p and
the set ∂E along the direction ±Rv, and the random variable
{vk}k∈Z≥0

takes values in {−1, 1}n. We assume that there
is an algorithm which gives the distance from p to the
position where the robot found the obstacle. This routine
can be designed using information of the acceleration and
the contact sensor lE of the robot. We make the following
assumption on the sequence of random variables v.

Assumption 2: (On the characteristics of the random in-
put): The sequence of random variables {vk}k∈Z≥0

, defined
on a probability space (Ω,F ,P) with vk : Ω → {−1, 1}n,
is i.i.d. with E[vk] = 0 for each k ∈ Z≥0.

Remark 1: For the easiness of presentation we neglect
the presence of noise in the observations of f . However,
from the analysis in the next section, practical convergence
in expected value to the tower can still be achieved under
appropriate statistical properties on the noise. •

V. CONVERGENCE ANALYSIS

In this section, we derive the convergence results for the
algorithm in (7). In particular, we show practical convergence
in probability to a ball with fixed radius depending on α
and δ̄1 + δ̄2 under different assumptions. We are able to
characterize the size of this ball under the assumption of
strong convexity of the cost function as shown in Theorem 1.
However, when we do not have enough information on the
cost function, like differentiability, we prove practical con-
vergence in probability to a ball that can be made arbitrarily
small by tuning α and δ̄1 + δ̄2 as shown in Theorem 2. We
begin by providing two supporting lemmas.

Lemma 1: (SPSA approximation to the gradient): Let
Assumption 2, on the characteristics of the random input,
hold. Assume that f convex, finite, and twice differentiable.
Then, if δ1 + δ2 > 0 we have

gi(p, δ, R, v) =
∂f(p)

∂pi
+ bi + ci, (8)

where bi =
∑

l,j,q,j 6=lRilRqj
vj
vl

∂f(p)
∂pq

, for i ∈ {1, . . . , n},

c = Rv−1

2(δ1+δ2)
v⊤R⊤(δ21∇

2f(p1)− δ22∇
2f(p2))Rv, pj = p+

δ′jRv for some δ′j ∈ [0, 1] and j ∈ {1, 2}. Otherwise, if
δ1 + δ2 = 0, we have gi(p, δ, R, v) = 0 for i ∈ {1, . . . , n}.

Proof: For the case when δ1 + δ2 = 0, by definition it
follows that gi(p, δ, R, v) = 0. Otherwise, when δ1+δ2 > 0,
by using a second-order Taylor expansion around p, there
exists δ′1 ∈ [0, 1] such that

(9)
f(p+ δ1Rv) = f(p) + δ1v

⊤R⊤∇pf(p)

+
1

2
δ21v

⊤R⊤∇2f(p1)Rv,

6853

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 27,2023 at 00:41:02 UTC from IEEE Xplore.  Restrictions apply. 



where p1 = p + δ′1Rv. Similarly, there is δ′2 ∈ [0, 1] with
p2 = p− δ′2Rv such that

(10)
f(p− δ2Rv) = f(p)− δ2v

⊤R⊤∇pf(p)

+
1

2
δ22v

⊤R⊤∇2f(p2)Rv.

Subtracting (10) from (9) and dividing the result by δ1+ δ2,

f(p+ δ1Rv)− f(p− δ2Rv)

δ1 + δ2
= v⊤R⊤∇pf(p)

+
1

2(δ1 + δ2)
v⊤R⊤(δ21∇

2f(p1)− δ22∇
2f(p2))Rv.

Multiplying last equation by Rv−1 we have

R
f(p+ δ1Rv)− f(p− δ2Rv)

δ1 + δ2
v−1 = v⊤R⊤∇pf(p)Rv

−1

+
Rv−1

2(δ1 + δ2)
v⊤R⊤(δ21∇

2f(p1)− δ22∇
2f(p2))Rv. (11)

We analyze next the i-th component of the first term of the
right-hand side (RHS) of last equation:

(

v⊤R⊤∇pf(p)Rv
−1

)

i
=

n
∑

l=1

Ril

vl

n
∑

j=1

vj

n
∑

q=1

Rqj

∂f(p)

∂pq

=

n
∑

l=1

Ril

vl

n
∑

j 6=l

vj

n
∑

q=1

Rqj

∂f(p)

∂pq
+

n
∑

l=1

Ril

vl
vl

n
∑

q=1

Rql

∂f(p)

∂pq

(12)=
∂f(p)

∂pi
+ bi,

where we have used the fact that R is an orthogonal matrix.
Replacing (12) in (11), (8) follows.

Lemma 2: (Optimality bounds): Assume f is convex, fi-
nite, and satisfies the superquadratic growth condition in (2).
Then, for p, p∗ ∈ R

n and all ξ ∈ ∂f(p), it holds

(13)(p− p∗)⊤ξ ≥
ρ

2
‖p∗ − p‖2,

and,
(14)‖ξ‖≥

ρ

2
‖p∗ − p‖.

Proof: We prove first inequality (13). Given (2), it holds
f(p∗) ≥ f(p)+(p∗−p)⊤ξ+ ρ

2‖p
∗−p‖2, for all p, p∗ ∈ R

n,
and ξ ∈ ∂f(p). Subtracting f(p) on both sides, we have
f(p∗)−f(p) ≥ (p∗−p)⊤ξ+ ρ

2‖p
∗−p‖2. Note that f(p∗)−

f(p) ≤ 0, then 0 ≥ (p∗ − p)⊤ξ + ρ
2‖p

∗ − p‖2. Hence, (13)
follows. Next, we prove (14). Note that the RHS of (13) is
bigger or equal than zero, then |(p − p∗)⊤ξ|≥ ρ

2‖p
∗ − p‖2.

By using the Cauchy-Schwarz inequality, it follows that ‖p−
p∗‖‖ξ‖≥ ρ

2‖p
∗ − p‖2, which implies (14).

The next theorem shows algorithm convergence when f
is twice differentiable.

Theorem 1: (Convergence when f is twice differentiable):
Let Assumption 2, on the characteristics of the random input,
hold. Assume that f is convex, finite, twice differentiable,
ρIn ≤ ∇2f(p) ≤ ΓIn, and ‖∇pf(p)‖≤ M . Furthermore,
assume α and δ̄1 + δ̄2 are sufficiently small. Then, for any

initial state p0, the solution p∗ of the system (7) is MSP-ES
with ultimate bound O = E \ Z , where

(15)
Z =

{

p ∈ E|‖p− p∗‖2 ≥
α

ρ
(M2(n2 + 2)

+
1

4
(δ̄1 + δ̄2)

2Γ2n3
}

.

Proof: Without loss of generality assume δ1(p,Rv) +
δ2(p,Rv) > 0. This is the case because, at any time k > 0
for which δ1(p,Rv) + δ2(p,Rv) = 0, with probability one,
the dynamics in (7) will generate a feasible direction in finite
time in E satisfying δ1(p,Rv)+δ2(p,Rv) > 0. Without loss
of generality assume p∗ ∈ E (the projection of p∗ on E is in E
and unique.) By the non-expansive property of the projection
operation, Algorithm (7), and the fact that p∗ ∈ E , we have

‖p+ − p∗‖2 = ‖ΠE [p− αg(p, δ(p,Rv), R, v)]− p∗‖2

≤ ‖p− αg(p, δ(p,Rv), R, v)− p∗‖2

= ‖p− α(∇pf(p) + b+ c)− p∗‖2

= ‖p− p∗‖2 − 2α(∇pf(p) + b+ c)⊤(p− p∗)

+ α2‖∇pf(p) + b+ c‖2,

where bi =
∑

l,j,q,j 6=lRilRqj
vj
vl

∂f(p)
∂pq

, for i ∈ {1, . . . , n},

c = Rv−1

2(δ1+δ2)
v⊤R⊤(δ21∇

2f(p1)− δ22∇
2f(p2))Rv, pj = p+

δ′jRv for some δ′j ∈ [0, 1] and j ∈ {1, 2} (see Lemma 1 to
learn how to get b and c).

Let V : Rn → R≥0, V = ‖p − p∗‖2, and define ∆V =
‖p+ − p∗‖2−‖p− p∗‖2. We have

∆V ≤ −2α(∇pf(p) + b+ c)⊤(p− p∗)

+ α2‖∇pf(p) + b+ c‖2.

By using (13), we have that −(p− p∗)⊤∇pf(p) ≤ − ρ
2‖p−

p∗‖2. It follows that

∆V ≤ −αρ‖p− p∗‖2 − 2α(b+ c)⊤(p− p∗)

+ α2‖∇pf(p) + b+ c‖2.

By taking expectation operator E[V (p+)|Fk], since vk is
i.i.d with E[vk] = 0 for each k ∈ Z≥0, and by noticing
that E[v−1

k ] = E[vk], it follows that E[b] = 0. Next, we
show that E[ci] = 0 for i ∈ {1, . . . , n}. We rewrite c =
m(v⊤Hv)Rv, where m = 1

2(δ1+δ2)
, H , R⊤(δ21∇

2f(p1)−

δ22∇
2f(p2))R, H = (hij), and we use the fact that v = v−1.

Then,

E[ci] = mE[

n
∑

l=1

Rilvl

n
∑

k=1

vk

n
∑

j=1

hkjvj ]

= m(qi + zi),

where qi = E[Riivi
∑n

k=1 vk
∑n

j=1 hkjvj ] and zi =
E[

∑

l 6=iRilvl
∑n

k=1 vk
∑n

j=1 hkjvj ]. Expanding qi,

qi = E[Riivi(vi

n
∑

j=1

hijvj +
∑

k 6=i

vk

n
∑

j=1

hkjvj)]

= RiiE[hiiv
3
i + v2i

∑

j 6=i

hijvj + vi
∑

k 6=i

v2khkk

+ vi
∑

k 6=i

vk
∑

j 6=k

hkjvj ]

= 0,
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where we have used the assumption that vk is i.i.d with
E[vk] = 0 and the fact that v3i = vi for i ∈ {1, . . . , n}.
Analogous to last procedure, we expand zi,

zi = E[
∑

l 6=i

Rilv
2
l

n
∑

j=1

hljvj +
∑

l 6=i

Rilvl
∑

k 6=l

vk

n
∑

j=1

hkjvj ]

= E[
∑

l 6=i

Rilv
3
l hll +

∑

l 6=i

Rilv
2
l

∑

j 6=l

hljvj

+
∑

l 6=i

Rilvl
∑

k 6=l

v2khkk +
∑

l 6=i

Rilvl
∑

k 6=l

vk
∑

j 6=k

hkjvj ]

= 0.

Thus E[c] = 0. Therefore,

(16)E[∆V |Fk] ≤ −αρ‖p− p∗‖2

+ α2(‖∇pf(p)‖
2 + E[‖b‖2 + ‖c‖2|Fk]).

Note that E[‖c‖2] ≤ 1
4Γ

2n3(δ1+δ2)
2 and from (12) we have

E[‖b‖2|Fk] = E[‖v⊤R⊤∇pf(p)Rv
−1 −∇pf(p)‖

2|Fk]

≤ E[‖v⊤R⊤‖2‖∇pf(p)‖
2‖Rv−1‖2 + ‖∇pf(p)‖

2|Fk]

≤M2(n2 + 1),

where we have used ‖∇pf‖≤M . Using above upper bounds
and replacing them in (16), it follows that

E[∆V |Fk] ≤ −αρV (p)

+
α2

4
(δ1 + δ2)

2Γ2n3 + α2M2(n2 + 2).

It follows E[∆V |Fk] ≤ −αρV (p)+α2J, where J = 1
4 (δ1+

δ2)
2Γ2n3+M2(n2+2). Reorganizing these terms, we have

E[V (p+)|Fk] ≤ (1− αρ)V (p) + α2J.

Therefore, by Theorem 1 the equilibrium point is MSE-ES.
Notice that the max inside the integral in (4) simplifies to a
point because we do not have a differential inclusion.

The set O given in (15) follows by noticing that
E[∆V |Fk] ≤ 0 if ‖p − p∗‖2≥ O and by noticing that
δ1 + δ2 ≤ δ̄1 + δ̄2.

Remark 2: In the last theorem, knowledge of Γ and M are
not required to prove convergence. Given that E is assumed
to be compact, existence of Γ is guaranteed. Furthermore,
since f is assumed locally Lipschitz, then there always exist
a finite M such that ‖∇pf(p)‖≤ M . However, we use
those values to characterize the size of the ball where the
trajectories converge to in expectation. •

If f is nondifferentiable, we are not able to characterize the
size of the ball as in Theorem 1. However, the next result
shows practical convergence in probability to p∗ and that
this ball can be made arbitrarily small by reducing α and
δ̄1+ δ̄2 without the assumption on the superquadratic growth
condition on f .

Theorem 2: (Convergence when f is nonsmooth): Let
Assumption 2, on the characteristics of the random input,
hold. Assume that α and δ̄1 + δ̄2 are sufficiently small.
Moreover, assume that f is convex, and finite with a unique
minimizer p∗. Then, for any initial state p0, the solution p∗

of the system (7) is MSP-ES.

Proof: The proof follows along the lines of the proof
of Theorem 1, except that we can not resort to the differen-
tiability properties of f and we do not use the assumption
on its superquadratic growth condition.

Since f is assumed to be convex and locally Lipschitz,
then the set-valued map ∂f is locally bounded, upper
semicontinuous, and takes non-empty, compact, and convex
values [11]. Using the last fact, the sup in (1) can be replaced
by a max, and then

(17)f(p+ δ1Rv) = f(p) + δ1v
⊤R⊤ξ̄ + o(δ1‖Rv‖),

where ξ̄ = argmaxξ∈∂fs(p){ξ
⊤Rv}. Similarly,

(18)f(p− δ2Rv) = f(p)− δ2v
⊤R⊤ξ + o(δ2‖Rv‖),

where ξ = argminξ∈∂f(p){ξ
⊤Rv}. Subtracting (18)

from (17) and dividing the result by δ1 + δ2, we have

f(p+ δ1Rv)− f(p− δ2Rv)

δ1 + δ2

=
1

δ1 + δ2

(

v⊤R⊤(δ1ξ̄ + δ2ξ) + o(δ1‖v‖)− o(δ2‖v‖)
)

,

where we have used the assumption that R is an orthogonal
matrix, then o(δi‖Rv‖) = o(δi‖v‖) for i ∈ {1, 2}. Multiply-
ing the last equation by Rv−1, we have

(19)

f(p+ δ1Rv)− f(p− δ2Rv)

δ1 + δ2
Rv−1

= v⊤R⊤(δ1ξ̄ + δ2ξ)
Rv−1

δ1 + δ2

+
Rv−1

δ1 + δ2
(o(δ1‖v‖)− o(δ2‖v‖)).

We analyze the i-th component of the first term of the RHS
of the last equation to obtain

(

v⊤R⊤(δ1ξ̄ + δ2ξ)
Rv−1

δ1 + δ2

)

i

=
n
∑

l=1

Ril

vl

n
∑

j=1

vj

n
∑

q=1

Rqj

δ1ξ̄q + δ2ξq
δ1 + δ2

(20)=
δ1ξ̄i + δ2ξi
δ1 + δ2

+ bi,

where bi =
∑

l,j,q,j 6=lRilRqj
vj
vl

δ1ξ̄q+δ2ξ
q

δ1+δ2
. Replacing (20)

in (19), it follows that

f(p+ δ1Rv)− f(p− δ2Rv)

δ1 + δ2
Rv−1 =

δ1ξ̄ + δ2ξ

δ1 + δ2
+ b+ c,

where c = Rv−1

δ1+δ2
(o(δ1‖v‖)− o(δ2‖v‖)). It follows that

g(p, δ(p,Rv), R, v) =
δ1ξ̄ + δ2ξ

δ1 + δ2
+ b+ c.

Without loss of generality assume δ1(p,Rv)+δ2(p,Rv) > 0.
This is the case because, at any time k > 0 for which
δ1(p,Rv) + δ2(p,Rv) = 0, with probability one, the dy-
namics in (7) will generate a feasible direction in finite time
in E satisfying δ1(p,Rv) + δ2(p,Rv) > 0.
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Further, without loss of generality assume p∗ ∈ E .
By the non-expansive property of the projection operation,

the dynamics in (7), and the fact that p∗ ∈ E , we have

‖p+ − p∗‖2 = ‖ΠE [p− αg(p, δ(p,Rv), R, v)]− p∗‖2

≤ ‖p− αg(p, δ(p,Rv), R, v)− p∗‖2

≤ ‖p− α
(δ1ξ̄ + δ2ξ

δ1 + δ2
+ b+ c

)

− p∗‖2.

It follows

‖p+ − p∗‖2 ≤ ‖p− p∗‖2

− 2α(
δ1ξ̄ + δ2ξ

δ1 + δ2
+ b + c)⊤(p− p∗)

+ α2‖
δ1ξ̄ + δ2ξ

δ1 + δ2
+ b + c‖2.

Let V : Rn → R≥0, V = ‖p − p∗‖2, and define ∆V =
‖p+ − p∗‖2−‖p− p∗‖2. Then we have

∆V ≤ −2α
(δ1ξ̄ + δ2ξ

δ1 + δ2
+ b + c

)⊤

(p− p∗)

+ α2‖
δ1ξ̄ + δ2ξ

δ1 + δ2
+ b+ c‖2.

Let fs : R
n → R be a convex function satisfying the

superquadratic growth condition for some ρ ∈ R>0 such that
fs(p

∗) = f(p∗), ξ⊤s (p− p∗) ≤ ξ⊤(p− p∗), ξ ∈ ∂f(p), and
ξs ∈ ∂fs(p) for all p ∈ E . Notice that fs always can be found
since p∗ is assumed unique and E is a compact set. Using
the last fact, there exists ρ > 0 such that −ξ⊤(p − p∗) ≤
− ρ

2‖p− p∗‖2. It follows that

∆V ≤ −αρ
δ1 + δ2
δ1 + δ2

‖p− p∗‖2

− 2α(b+ c)⊤(p− p∗) + α2‖
δ1ξ̄ + δ2ξ

δ1 + δ2
+ b+ c‖2.

By noticing that E[b] = E[c] = 0, it follows that

E[∆V |Fk] ≤ −αρ‖p− p∗‖2+α2‖
δ1ξ̄ + δ2ξ

δ1 + δ2
+b+c‖2|Fk].

From here, the proof follows similar steps as the proof of
Theorem 1, where we use ξ instead of ∇pf , and consider
O(1) terms instead of the upper bound of the Hessian.

VI. SIMULATIONS

Next we show an example that illustrates the response
of our proposed Algorithm (7) to solve a particular source
seeking problem. Figure 1 illustrates the evolution of the
mobile robot to a source f = (p1 − .9)2 + |p1 − .9|+(p2 −
1)2 + |p2 − 1| with a box constraint p ∈ [0, 1]2. Notice that
the function f is nondifferentiable and strongly convex, then
it satisfies the conditions on Theorem 2. The tower is located
at p∗ = [.9, 1]⊤. This simulation uses α = δ̄1 = δ̄2 = .02 and
Rk = In for all k ≥ 0. We have introduced additive gaussian
noise in the measurements of the intensity signal of zero
mean and variance .0001. The robot starts at p0 = [.6, .1]⊤.
The robot converges to a ball containing the optimizer p∗,
which in turn can be made arbitrarily small by decreasing
the parameters α, δ̄1, and δ̄2.

Evolution of the mobile robot p1 vs p2
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Fig. 1. Evolution of the mobile robot for f = (p1−.9)2+|p1−.9|+(p2−
1)2 + |p2 − 1| with a box constraint p ∈ [0, 1]2. The level sets of f are
shown in colors and the trajectory of the robot is shown in black.

VII. CONCLUSIONS

Building on the simultaneous perturbation stochastic ap-
proximation method, we have introduced a novel algorithm
that allows a mobile robot to find the maximizer of an
emitting signal. We are able to prove convergence to a ball
around the optimizer of the emitting signal, even for non-
differentiable signal case and restricting the motion of the
robot to a convex set. Current work is being devoted to
extend the available proofs to scenarios that include obstacles
in the environment as well as the relaxation of the various
assumptions of the algorithms.
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