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Technological advances in ad-hoc networking and miniaturization of electro-mechanical

systems are making possible the use of large numbers of mobile agents (for example, mobile

robots, human agents, unmanned vehicles) to perform surveillance, search and rescue, transport

and delivery tasks in aerial, underwater, space, and land environments. However, the successful

execution of such tasks often hinges upon accurate position information, which is needed

in lower-level locomotion and path-planning algorithms. Common techniques for localization

of mobile robots are the classical preinstalled beacon-based localization algorithms [1], fixed

feature-based simultaneous localization and mapping (SLAM) algorithms [2], and GPS naviga-

tion [3]; see Figure 1 for further details. However, these localization techniques work based on

assumptions such as the existence of distinct and static features that can be revisited often, or line-

of-sight to GPS satellites, which may not be feasible for operations such as search and rescue [4],

[5], environment monitoring [6], [7], and oceanic exploration [8]. In case of GPS navigation,

there is also a current concern about signal jamming for outdoor navigation, especially for UAV

coordination and control. Instead, cooperative localization (CL) is emerging as an alternative
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localization technique that can be employed in such scenarios.

In CL, a group of mobile agents with processing and communication capabilities use

relative measurements with respect to each other (no reliance on external features) as a feedback

signal to jointly estimate the poses (both position and orientation) of all team members, which

results in an increased accuracy for the entire team. The principle behind CL is similar to that

of differential GPS, by which inaccurate GPS measurements are corrected with fixed range

measurements from stations with known locations. However, CL goes beyond in its application

since no fixed stations or landmarks, and continuous access to GPS measurements (even if they

are inaccurate) are assumed.

The particular appeal of CL relies on the fact that sporadic access to accurate localization

information by a particular robot results in a net benefit for the rest of the team. This is possible

thanks to the coupling that is created through the state estimation process. Moreover, the use

of other robots as landmarks also eliminates the potential problems on data association and

perception, because the robots can be equipped with distinctive features or markers that are

easily recognizable by other robots. Another nice feature of CL is its cost effectiveness, since it

does not require extra hardware beyond the operational components normally used in cooperative

robotic tasks. In such situations, agents are normally equipped with unique identifiers and sensors

which, enable them to identify and locate other group members. To achieve coordination, these

agents often broadcast their status information to one another. In addition, given affordability and

wide availability of communication devices, CL has also emerged as an augmentation system to

compensate for poor odometric measurements, and/or noisy and distorted measurements from
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other sensor suites such as onboard IMU systems; see, for example, [9].

The idea of exploiting relative robot-to-robot measurements for localization can be traced

back to [10], where members of a mobile robotic team were divided into two groups, which

took turns remaining stationary as landmarks for the others. Later, [11] removed the necessity

of some robots to be stationary, and also introduced the term cooperative localization to refer to

this localization technique. Since then, many cooperative localization algorithms using various

estimation strategies such as extended Kalman filters (EKF) [12], maximum likelihood [13],

maximum a posteriori (MAP) [14], and particle filters [15], [16], [17] have been developed.

CL techniques to handle system and measurement models with non-Gaussian noises are also

discussed in [18], [19].

Although, due to its independence from environmental features or GPS information, CL is a

very attractive concept for multi-robot localization, it comes with new challenges associated with

its implementation with acceptable communication, memory, and processing costs. CL is a joint

estimation process that results in highly coupled pose estimation for the entire robotic team. These

couplings/cross-correlations are created due to the relative measurement updates. Accounting for

these coupling/cross-correlations is crucial for both filter consistency and also for propagating the

benefit of a robot-to-robot measurement update to the entire group. In “Cooperative localization

via EKF” these features are highlighted through detailed examination of equations of a centralized

EKF CL, and a simulation demonstration.

A centralized implementation of CL is the most straightforward mechanism to keep an

accurate account of the couplings and, as a result, to obtain more accurate solutions. In a
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centralized scheme, at every time step, a single device, either a leader robot or a fusion center

(FC), gathers and processes information from the entire team. Then, it broadcasts back the

estimated location results to each robot (see, for example, [12], [20]). But, such a central

operation is highly energy consuming since it incurs a high processing cost on the FC and a high

communication cost on both FC and each robotic team member. Moreover, central operations

lack robustness due to existence of single failure point.This energy inefficiency and lack of

robustness make the centralized implementation less preferable.

A major challenge in developing decentralized CL (DCL) algorithms is how to maintain

a precise account of cross-correlations and couplings between the agents’ estimates without

invoking all-to-all communication at each time step. The design and analysis of DCL algo-

rithms that maintain the consistency of the estimation process while maintaining ‘reasonable’

communication and computation costs have been the subject of extensive research since the

conception of the CL idea. “Decentralized cooperative localization: how to account for intrinsic

correlations in cooperative localization,” gives an overview of some of the DCL algorithms

in the literature, with a special focus on how these algorithms maintain/account for intrinsic

correlations of CL strategy. Subsequently, “The interim master DCL algorithm: a tightly coupled

DCL strategy based on Kalman-filter decoupling,” provides readers with an example of a DCL

algorithm that maintains the exact account of cross covariances between robotic team member

pose estimates without resorting to all-to-all communication. A preliminary version of this

example DCL strategy appeared in [21]. The reader interested on technical analysis and details

beyond decentralization for CL can find a brief literature guide in “Further Reading.”
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Notations: Before proceeding further, the notations are introduced. Mn, 0n×m (when m = 1, 0n

is used), and In, respectively, denote the set of real positive definite matrices of dimension n×n,

the zero matrix of dimension n×m, and the identity matrix of dimension n×n. A> represents

the transpose of matrix A ∈ Rn×m. The block diagonal matrix of set of matrices A1, . . . ,AN is

Diag(A1, · · · ,AN). For finite sets V1 and V2, V1\V2 is the set of elements in V1, but not in V2.

For a finite set V its cardinality is represented by |V |. In a team of N agents, the local variables

associated with agent i are distinguished by the superscript i, for example, xi is the state of

agent i, x̂i is its state estimate, and Pi is the covariance matrix of its state estimate. In this paper,

the term cross covariance refers to the correlation terms between two agents in the covariance

matrix of the entire network. The cross covariance of the state vectors of agents i and j is Pij .

The propagated and updated variables, say x̂i, at time step k are denoted by x̂i-(k) and x̂i+(k),

respectively. The time step argument of the variables as well as matrix dimensions are dropped

whenever they are clear from the context. In a network of N agents, p = (p1, . . . ,pN) ∈ Rd,

d =
∑N

i=1 n
i is the aggregated vector of local vectors pi ∈ Rni .

Cooperative localization via EKF

This section provides an overview of a CL strategy that employs an EKF following [22].

By a close examination of this algorithm, it is possible to explain why accounting for the intrinsic

cross-correlations in CL is both crucial for filter consistency and a key to spreading the benefit of

an update of a relative robot-to-robot measurement to the entire team. This section also discusses

the communication cost of implementing this algorithm in a centralized manner.
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Consider a group of N mobile agents with communication, processing, and measurement

capabilities. Depending on the adopted CL algorithm, communication can be in (a) a bidirectional

manner with a FC, (b) a single broadcast to the entire team or (c) multihop fashion of every

agent rebroadcasting every received message intended to reach the entire team; see Figure 2. Each

agent has a detectable unique identifier (UID), which, without loss of generality, is assumed to

be a unique integer belonging to the set V = {1, . . . , N}. Using a set of proprioceptive sensors,

every agent i ∈ V measures its self-motion, for example, by compass readings and/or wheel

encoders, and uses it to propagate its equations of motion

xi(k + 1) = f i(xi(k),ui(k)) + gi(xi(k))ηi(k), (1)

where xi ∈ Rni , ui ∈ Rmi , and ηi ∈ Rpi are, respectively, the state vector, the input vector,

and the process noise vector of agent i. Here, f i(xi,ui) and gi(xi), are, respectively, the system

function and process noise coefficient function of the agent i ∈ V . The state vector of each

agent can be composed of variables that describe the robot’s global pose in the world (for

example, latitude, longitude, direction), as well as other variables potentially needed to model

the robots dynamics (for example, steering angle, actuation dynamics). The team can consist of

heterogeneous agents, nevertheless, the collective motion equation of the team can be represented

by

x(k + 1) = f(x(k),u(k)) + g(x(k))η(k), (2)

where, x = (x1, · · · ,xN), u = (u1, · · · ,uN), η = (η1, · · · ,ηN), f(x,u) =

(f1(x1,u1), · · · , fN(xN ,uN)), and g(x) = Diag(g1(x1), · · · ,gN(xN)).

If each agent only relies on propagating its equation of motion in (1) using self-motion
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measurements, the state estimate error drifts due to the noise term ηi(k), with a standard deviation

that grows unbounded with time. To reduce the growth rate of this estimation error, a CL

strategy can be employed. Thus, let every agent i ∈ V also carry exteroceptive sensors to

monitor the environment to detect, uniquely, the other agents j ∈ V in the team and take relative

measurements

zij(k + 1) = hij(x
i(k),xj(k)) + νi(k), (3)

where zij ∈ Rni
z from them, for example, relative pose, relative range, relative bearing measure-

ments, or both. Here, hij(x
i,xj) is the measurement model and νi is the measurement noise

of agent i ∈ V . Relative-measurement feedback, as shown below, can help the agents improve

their localization accuracy, though the overall uncertainty can not be bounded; see [22]. The

tracking performance can be improved significantly if agents have occasional absolute positioning

information, for example, via GPS or relative measurements taken from a fixed landmark with a

priori known absolute location. Any absolute pose measurement by an agent i ∈ V , for example,

through intermittent GPS access, is modeled by zii(k+ 1) = hii(x
i(k)) + ν̄i(k). The agents can

obtain concurrent exteroceptive absolute and relative measurements.

In the technical developments below, all the process noises ηi and the measurement noise

νi, i ∈ V , are assumed to be independent zero-mean white Gaussian processes with, respectively,

known positive definite variances Qi(k) = E[ηi(k)ηi(k)>], Ri(k) = E[νi(k)νi(k)>], and

R̄
i
(k) = E[ν̄i(k)ν̄i(k)>]. Moreover, let all the sensor noises be white and mutually uncorrelated

and all sensor measurements be synchronized. Then, the centralized EKF CL algorithm is a

straightforward application of EKF over the collective motion model of the robotic team (2) and
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measurement model (3). The propagation stage of this algorithm is

x̂-(k + 1) = f(x̂+(k),u(k)), (4a)

P-(k + 1) = F(k)P+(k)F(k)> + G(k)Q(k)G(k)>. (4b)

where F = Diag(F1, · · · ,FN), G = Diag(G1, · · · ,GN), and Q = Diag(Q1, · · · ,QN), with,

for all i ∈ V , Fi = ∂
∂xi f(x̂i+(k),ui(k)), and Gi = ∂

∂xi g(x̂i+(k)).

If there exists a relative measurement in the network at some given time k + 1, say robot

a takes relative measurement from robot b, the states are updated as follows. The innovation of

the relative measurement and its covariance are, respectively,

ra = zab − hab(x̂
a-(k + 1), x̂b-(k + 1)), (5a)

Sab =Hab(k+1)P-(k+1)Hab(k+1)>+Ra(k+1). (5b)

where (without loss of generality a < b)

Hab(k) =
[1

0
···· · ·

a

−H̃a (k)
a+1

0
···· · ·

b

H̃b(k)
b+1

0
···· · ·
]
,

H̃a(k) = − ∂

∂xa
hab(x̂

a-(k), x̂b-(k)), (6)

H̃b(k) =
∂

∂xb
hab(x̂

a-(k), x̂b-(k)).

An absolute measurement by a robot a ∈ V can be processed similarly, except that in (6),

H̃b becomes zero, while in (5), the index b should be replaced by a and Ra(k+1) should be

replaced by R̄
a
(k+1). Then, the Kalman filter gain is given by

K(k + 1) = P-(k + 1)Hab(k + 1)>Sab
−1.
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And, finally, the collective pose update and covariance update equations for the network are

x̂+(k+1) =x̂-(k+1)+K(k+1)ra, (7a)

P+(k+1) =P-(k+1)−K(k+1)SabK(k+1)>. (7b)

Because K(k+1)SabK(k+1)> is a positive semidefinite term, the update equation (7b) shows

that any relative measurement update results in a reduction of the estimation uncertainty.

To explore the relationship among the estimation equations of each robot, the aforemen-

tioned collective form of the EKF CL is expressed in terms of its agent-wise components in

Algorithm 1. Here, the Kalman filter gain is partitioned into K =

[
K>1 , · · · ,K>N

]>
, where

Ki ∈ Rni×ni
z is the portion of the Kalman-gain used to update the pose estimate of the

agent i ∈ V . To process multiple synchronized measurements, sequential updating (consult, for

example, [23, Ch. 3],[24]) is employed.

Algorithm 1 showcases the role of past correlations in a CL strategy. First, observe that,

despite having decoupled equations of motion, the source of the coupling in the propagation phase

is the cross covariance equation (16c). Upon incidence of a relative measurement between agents

a and b, the cross covariance term between robots a and b becomes nonzero, and its evolution

in time requires the information of these two agents. Thus, these two agents have to either

communicate with each other all the time or a central operator has to take over the propagation

stage. As the number of relative measurements grow, more nonzero cross covariance terms are

created. As a result, the communication cost to perform the propagation grows, requiring the

data exchange all the time with either a FC or all-to-all agent communications, even when

there is no relative measurement in the network. The update equations (18) are also coupled
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and their calculations need, in principle, a FC. The next observation regarding the role of the

cross covariance terms can be deduced from studying the Kalman-gain equation (19). As this

equation shows, when an agent a takes a relative measurement from agent b, any agent whose

pose estimate is correlated with either of agents a and b in the past, (that is, P-
ib(k + 1) and/or

P-
ia(k + 1) are nonzero) has a nonzero Kalman-gain and, as a result, the agent benefits from

this measurement update. The same is true in the case of an absolute measurement taken by a

robot a.

The following simple simulation study demonstrates the significance of maintaining an

accurate account of cross covariance terms between the state estimates of the team members.

This simulation study involves a team of 3 mobile robots moving on a flat terrain whose equations

of motion in a fixed reference frame, for i ∈ {1, 2, 3}, are modeled as

xi(k + 1) =xi(k) + V i(k) cos(φ(k)) δt,

yi(k + 1) =yi(k) + V i(k) sin(φ(k)) δt,

φi(k + 1) =φi(k) + ω(k) δt,

where V i(k) and ωi(k) are true linear and rotational velocities of robot i at time k and δt is the

stepsize. Here, the pose vector of each robot is xi = [xi, yi, φi]>. Every robot uses odometric

sensors to measure its linear V i
m(k) = V i(k) + ηiV (k) and rotational ωi

m(k) = ωi(k) + ηiω(k),

velocities, where ηiV and ηiω are their respective contaminating measurement noise. The standard

deviation of ηiV (k), i ∈ {1, 2, 3}, is 0.1V i(k), while the standard deviation of ηiω is 1 deg/s,

for robot 1 and robot 2, and 0.5 deg/s for robot 3. Robots {1, 2, 3} can take relative

pose measurements from one another. This relative measurements are corrupted by additive
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Gaussian measurement noise with standard deviations of, respectively, (0.05 m, 0.05 m, 1 deg/s),

(0.05 m, 0.05 m, 2 deg/s), (0.07 m, 0.07 m, 1.5 deg/s) for robots 1, 2 and 3. Here, it is also

assumed that robot 1 can obtain absolute position measurement with a standard deviation of

(0.1m, 0.1m) for the measurement noise. Figure 3 demonstrates the x-coordinate estimation

error (solid line) and the 3σ error bound (dashed lines) of these robots when they (a) only

propagate their equations of motion using self-motion measurements (black plots), (b) employ

an EKF CL ignoring past correlations between the estimates of the robots (blue plots), (c)

employ an EKF CL with an accurate account of past correlations (red plots). As this figure shows,

employing a CL strategy improves the localization accuracy by reducing both the estimation error

and its uncertainty. However, as plots in blue show, ignoring the past correlations (here cross

covariances) among the robots state estimates results in overly optimistic estimations (notice the

almost vanished 3σ error bound in blue plots while the solid blue line goes out of these bounds,

an indication of inconsistent estimates). In contrast, by taking into account the past correlations,

more consistent estimates are obtained (see red plots).

Figure 3 also showcases the role of past cross covariances in spreading the benefit of a

relative measurement between two robots, or of an absolute measurement by a robot to the rest

of the team. For example, consider robot 2. In the time interval [10, 90] seconds, robot 1 is

taking a relative measurement from robot 2. As a result, the state estimation equation of robot

1 and robot 2 are correlated, that is, the cross covariance term between these two robots is

nonzero. Therefore, in the time interval [90, 110] seconds, when the estimation update is due to

the relative measurement taken by robot 3 from robot 1, the state estimate of robot 2 is also

improved (see red plots). In the time interval [190, 240] seconds, when the estimation update is
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due to the absolute measurement taken by robot 1, both robot 2, and 3 also benefit from this

measurement update due to past correlations (see the red plots). Figure 4 shows the trajectories

of the robots when they apply EKF CL strategy. For more enlightening simulation studies, the

interested reader is referred to [22].

Decentralized cooperative localization: how to account for intrinsic

correlations in cooperative localization

Given that

(a) past correlations cannot be ignored,

(b) they are useful to increase the localization accuracy of the team,

(c) the coupling that the correlations create in the state estimation equations of team members

is the main challenge in developing a decentralized cooperative localization algorithm,

regardless of the technique, two distinct trends can be observed in the literature for the design

of DCL algorithms: “loosely coupled” strategies, and “tightly coupled” strategies; see Figure 5.

In the loosely coupled DCL methodology, only one or both of the agents involved in a

relative measurement update their estimates using that measurement. Here, an exact account

of the “network” of correlations (see Figure 5) due to the past relative measurement updates

is not maintained. However, to ensure estimation consistency, some steps are taken to fix this

problem. Examples of loosely coupled DCL are given in [8], [25], [26], [27] and [28]. In the

algorithm of [8], only the agent obtaining the relative measurement updates its state. Here, to
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produce consistent estimates, a bank of EKFs is maintained at each agent. Using an accurate

book keeping of the identity of the agents involved in previous updates and the age of such

information, each of these filters is only updated when its propagated state is not correlated to

the state involved in the current update equation. Although this technique does not impose a

particular communication graph on the network, the computational complexity, the large memory

demand, and the growing size of information needed at each update time are its main drawbacks.

In [25], it is assumed that the relative measurements are in the form of relative pose. This enables

the agent taking the relative measurement to use this measurement and its current pose estimate

to obtain and broadcast a pose and the associated error covariance of its landmark agent (the

landmark agent is the agent the relative measurement is taken from). Then, the landmark agent

uses the covariance intersection method (see [29], [30]) to fuse the newly acquired pose estimate

with its own current estimate to increase its estimation accuracy. Covariance intersection for

DCL is also used in [26] for the localization of a group of space vehicles communicating over

a fixed ring topology. Here, each vehicle propagates a model of the equation of motion of the

entire team and, at the time of relative pose measurements, the vehicle fuses its estimate of

the team states and of its landmark vehicle using covariance intersection. Another example of

the use of split covariance intersection is given in [27] for intelligent transportation vehicles

localization. [28] uses a common past-invariant ensemble Kalman pose estimation filter in

another loosely-coupled CL approach for intelligent vehicles. This algorithm is very similar

to the decentralized covariance intersection data fusion method described above, with the main

difference that it operates with ensembles instead of with means and covariances. Even though

the covariance intersection method produces consistent estimates for a loosely coupled DCL
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strategy, this method is known to produce overly conservative estimates. Overall, the loosely

coupled algorithms have the advantage of not imposing any particular connectivity condition on

the team. However, they are conservative by nature, because they do not enable other agents in

the network to fully benefit from measurement updates.

In the tightly coupled DCL methodology, the goal is to exploit the ‘network’ of correlations

created across the team (see Figure 5), so that the benefit of the update can be extended beyond the

agents involved in a given relative measurement. However, this advantage comes at a potentially

higher computational, storage, and/or communication cost. The dominant trend in developing

decentralized cooperative localization algorithms in this way is to distribute the computation of

components of a centralized algorithm among team members. Some of the examples for this class

of DCL are given in [31], [22], [14], [32], [33]. In a straightforward fashion, decentralization

can be conducted as a multicentralized CL, wherein each agent broadcasts its own information

to the entire team. Then, every agent can calculate and reproduce the centralized pose estimates

acting as a FC [31]. Besides a high processing cost for each agent, this scheme requires all-to-all

agent communication at the time of each information exchange. A DCL algorithm distributing

computations of an EKF centralized CL algorithm is proposed in [22]. To decentralize the cross

covariance propagation, [22] uses a singular-value decomposition to split each cross covariance

term between the corresponding two agents. Then, each agent propagates its portion. However, at

update times, the separated parts must be combined, requiring an all-to-all agent communication

in the correction step. Another DCL algorithm based on decoupling the propagation stage of

an EKF CL using new intermediate variables is proposed in [21]. But here, unlike [22], at

update stage, each robot can locally reproduce the updated pose estimate and covariance of
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the centralized EKF after receiving an update message only from the robot that has made

the relative measurement. Subsequently, [14] and [33] present DCL strategies using MAP

estimation procedure. In [14], computations of a centralized MAP CL algorithm are distributed

among all the team members. In [33], the amount of data required to be passed between

mobile agents to obtain the benefits of cooperative trajectory estimation locally is reduced by

letting each agent to treat the others as moving beacons whose estimate of positions is only

required at communication/measurement times. The aforementioned techniques all assume that

communication messages are delivered, as prescribed, perfectly, all the time. A DCL approach

equivalent to a centralized CL, when possible, which handles both limited communication ranges

and time-varying communication graphs, is proposed in [32]. This technique uses an information

transfer scheme wherein each agent broadcasts all its locally available information to every agent

within its communication radius at each time step. The broadcasted information of each agent

includes the past and present measurements, as well as past measurements previously received

from other agents. The main drawback of this method is its high communication and memory

cost, which may not be affordable in applications with limited communication bandwidth and

storage resources.

The interim master DCL algorithm: a tightly coupled DCL strategy based

on Kalman filter decoupling

Because of its recursive and simple structure, the EKF is a very popular estimation

strategy. However, as discussed in “Cooperative localization via EKF,” a naive decentralized
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implementation of EKF requires an all-to-all communication at every time step of the algorithm.

This section describes how by exploiting a special pattern in the propagation estimation equations,

tightly coupled exact decentralized implementations of EKF for CL with reduced communication

workload per agent can be obtained. Here, “exact” means that if these decentralized implemen-

tations are initialized the same as a centralized EKF, then, they produce the same state estimate

and the associated state error covariance of the centralized filter. The focus in this section is on

the algorithm of [22], and a detailed treatment of the interim master DCL (IMDCL) algorithm

of [21].

The algorithm of [22] and the IMDCL algorithm are developed based on the observation

that, in localization problems, normally, the interest is in the explicit value of the pose estimate

and the error covariance associated with it, while cross covariance terms are only required in the

update equations. Such an observation promoted the proposal of an implicit tracking of cross

covariance terms by splitting them into intermediate variables that can be propagated locally by

the agents. Then, cross covariance terms can be recovered by putting together these intermediate

variables at any update incidence. Let the last measurement update be in time step k and assume

that for m subsequent and consecutive steps no relative measurement incidence takes place

among the team members, that is, no intermediate measurement update is conducted in this time

interval. In such a scenario, the propagated cross covariance terms for these m consecutive steps

are given by

P-
ij(k + l) = Fi(k + l − 1) · · · Fi(k) P+

ij(k) Fj(k)
> · · · Fj(k + l − 1)

>
, l ∈ {1, · · · ,m},

(8)

for i ∈ V and j ∈ V\{i}. That is, at each time step after k, the propagated cross covariance term
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is obtained by recursively multiplying its previous value by the Jacobian of the system function

of agent i on the left and by the transpose of the Jacobian of the system function of agent

j at that time step on the right. Based on this observation, [22] decomposed the last updated

cross covariance term P+
ij(k) between any agent i and any other agent j of the team into two

parts (for example, using the singular-value decomposition technique). Then, agent i propagated

the left portion, and agent j propagated the right portion. Note that, as long as there is no

relative measurement among team members, each agent can propagate its portion of the cross

covariance term locally without needing to communication with others. Such a decomposition

in [22] led to a fully decentralized estimation algorithm during the propagation cycle. However,

in the update stage, all the agents needed to communicate with one anther to put together the

split cross covariance terms and proceed with the update stage. The approach to obtain IMDCL,

which is outlined below, is also based on using intermediate variables to decouple the cross

covariance propagation equations. However, this alternative decomposition allows every agent

to update its pose estimate and its associated covariance in a centralized equivalent manner,

using merely a scalable communication message that is received from the team member that

takes the relative measurement. As such, the IMDCL algorithm removes the necessity of an

all-to-all communication in the update stage and replaces it with propagating a constant size

communication message that holds the crucial piece of information needed in the update stage.

In particular, the IMDCL algorithm is developed based on the observation that P-
ij(k + l)

in (8) is composed of the following 3 parts: (a) Fi(k+ l− 1) · · · Fi(k), which is local to agent

i, (b) the P+
ij(k), which does not change unless there is relative measurement among the team

members, and (c) Fj(k)
> · · · Fj(k + l − 1)

>, which is local to agent j. Motivated by how these
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three parts evolve in time, the propagated cross covariances (16c) are written as

P-
ij(k + 1) = Φi(k + 1)Πij(k)Φj(k + 1)>, k ∈ {0, 1, 2, · · · }, (9)

where, for i ∈ V ,

Φi(0) = Ini , Φi(k + 1) = Fi(k)Φi(k), k ∈ {0, 1, 2, · · · }. (10)

It is interesting to notice the resemblance of (10) and the transition matrix for discrete-time

systems. The variable Πij ∈ Rni×nj , for i, j ∈ V and i 6= j in (9) is also time-varying and

initialized at Πij(0) = 0ni×nj . When there is no relative measurement at time k + 1, (9) results

into Πij(k + 1) = Πij(k). However, when there is a relative measurement among the team

members, Πij must be updated in a manner such that P-
ij(k+2) = Φi(k+2)Πij(k+1)Φj(k+2)>.

To this end, notice that the update equations (17) and (19) of the centralized CL algorithm can

be rewritten by replacing the cross covariance terms by (9) (recall that in the update stage, the

assumption is that robot a has taken measurement from robot b)

Sab = Ra + H̃aP
a-(k + 1)H̃

>
a + H̃bP

b-(k + 1)H̃
>
b −

H̃a Φa(k + 1)Πab(k)Φb(k + 1)>︸ ︷︷ ︸
P-

ab(k+1)

H̃
>
b − H̃b Φb(k + 1)Πba(k)Φa(k + 1)>︸ ︷︷ ︸

P-
ba(k+1)

H̃
>
a , (11)

and the Kalman-gain is

Ki = Φi(k + 1) Γi Sab
− 1

2 , i ∈ V ,

where

Γi =(Πib(k)Φb>H̃
>
b −Πia(k)Φa>H̃

>
a ) Sab

− 1
2 , i∈V\{a,b}, (12a)

Γa =(Πab(k)Φb>H̃
>
b −(Φa)−1Pa-H̃

>
a ) Sab

− 1
2, (12b)

Γb =((Φb)−1Pb-H̃
>
b −Πba(k)Φa>H̃

>
a ) Sab

− 1
2 . (12c)
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Generally, Fi(k) is invertible for all k ≥ 0 and i ∈ V . Therefore, Φi(k), for all k ≥ 0 and i ∈ V ,

is invertible.

Next, for i 6= j and i, j ∈ V , the cross covariance terms (18c) are written as

P+
ij(k + 1) = P-

ij(k + 1)−Ki Sab K>j

= Φi(k + 1)Πij(k)Φj(k + 1)>−
(
Φi(k + 1)ΓiSab

− 1
2

)
Sab

(
Φj(k + 1)ΓjSab

− 1
2

)>
= Φi(k + 1)

(
Πij(k)− ΓiΓj

>)Φj(k + 1)>.

Let

Πij(k + 1) = Πij(k)− ΓiΓ
>
j .

Then, the cross covariance update (18c) can be rewritten as

P+
ij(k + 1) = Φi(k + 1) Πij(k + 1) Φj(k + 1)>. (13)

Therefore, at time k + 2, the propagated cross covariances terms for i 6= j and i, j ∈ V are

P-
ij(k + 2) = Fi(k + 1) P+

ij(k + 1) Fj(k + 1)>

= Fi(k + 1)Φi(k + 1)Πij(k + 1)Φj(k + 1)>Fj(k + 1)>

= Φi(k + 2) Πij(k + 1) Φj(k + 2)>.

In short, the propagated and the updated cross covariance terms of the centralized EKF CL can

be written as, respectively, (9) and (13) for all k ∈ {0, 1, · · · } where the Φi(k) of each robot

evolves according to (10) and

Πij(k + 1) =


Πij(k), no relative measurement at k + 1,

Πij(k)− Γi Γ
>
j , otherwise,

(14)
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for i, j ∈ V and i 6= j.

Next, notice that the updated state estimate and covariance matrix in the new variables can

be written as follows, for i ∈ V ,

x̂i+(k + 1) = x̂i-(k + 1) + Φi(k + 1) Γi r̄
a, (15)

Pi+(k + 1) = Pi-(k + 1)−Φi(k + 1)Γi Γ
>
i Φi(k + 1)>,

where r̄a = Sab
− 1

2 ra.

Using the alternative representations (9), (13), and (15) of the EKF CL, the decentralized

implementation IMDCL is given in Algorithm 2. The IMDCL algorithm is developed by keeping

a local copy of Πlj at each agent i ∈ V , that is, Πi
jl for all j ∈ V\{N} and l ∈ {j+ 1, · · · , N}.

Here, because of the symmetry of the covariance matrix only, for example, the upper triangular

part of this matrix is needed to be stored and to be evolved. For example, for a group of N = 4

robots, every agent maintains a copy of {Πi
12, Πi

13, Πi
14, Πi

23, Πi
24, Πi

34}. During the algorithm

implementation, it is assumed that if Πi
jl is not explicitly maintained by agent i, the agent

substitutes the value of (Πi
lj)
> for it.

In IMDCL, every agent i ∈ V initializes its own state estimate x̂i+(0), the error covariance

matrix Pi+(0), Φi(0) = Ini , and its local copies Πi
jl(0) = 0nj×nl , for j ∈ V\{N} and l ∈

{j+1, · · · , N}; see (20). At propagation stage, every agent evolves its local state estimate, error

covariance and Φi, according to, respectively, (16a), (16b), (10); see (21). At every time step,

when there is no exteroceptive measurement in the team, the local updated state estimates and

error covariance matrices are replaced by their respective propagated counterparts, while each
20



Πi
jl, to respect (14), is kept unchanged; see (22). When there is a robot-to-robot measurement,

examining (6), (5a), (11), (12b), and (12c) shows that agent a, the robot that made the relative

measurement, can calculate these terms using its local Πi
jl and acquiring x̂b-(k+ 1) ∈ Rnb ,

Φb(k+1) ∈ Rnb×nb , and Pb-(k+1) ∈Mnb; see (23) and (24). Then, agent a can assume the role

of the interim master and issue the update terms for other agents in the team; see (25). Using

this update message and their local variables, then each agent i ∈ V can compute (12a) and

obtain its local state updates of (15) and (14); see (27). Figure 6 demonstrates the information

flow direction between agents while implementing the IMDCL algorithm.

The inclusion of absolute measurements in the IMDCL is straightforward. The agent

making an absolute measurement is an interim master that can calculate the update-message

using only its own data and then broadcast it to the team. Next, observe that the IMDCL

algorithm is robust to permanent agent dropouts from the network. The operation only suffers

from a processing cost until all agents become aware of the dropout. Also, notice that an external

authority, for example, a search-and-rescue chief, who needs to obtain the location of any agent,

can obtain this location update at any rate (s)he wishes to by communicating with that agent.

This reduces the communication cost of the external authority.

The IMDCL algorithm works under the assumption that the message from the agent taking

the relative measurement, the interim master, reaches the entire team. Any communication failure

results in a mismatch between the local copies of Πlj at the agents receiving and missing the

communication message. Readers are referred to [34] for a variation of IMDCL that is robust to

intermittent communication message dropouts. Such guarantees in [34] are provided by replacing
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the fully decentralized implementation with a partial decentralization where a shared memory

stores and updates the Πlj , j ∈ V\{N} and l ∈ {j + 1, · · · , N}.

Complexity analysis

For the sake of an objective performance evaluation, a study of the computational

complexity, the memory usage, as well as communication cost per agent per time step of the

IMDCL algorithm in terms of the size of the mobile-agent team N is provided next. At the

propagation state of the IMDCL algorithm, the computations per agent are independent of the

size of the team. However, at the update stage, for each measurement update, the computation

of every agent is of order N(N−1)/2 due to (33c). Because multiple relative measurements are

processed sequentially, the computational cost per agent at the completion of any update stage

depends on the number of the relative measurements in the team, henceforth denoted by Nz.

Then, the computational cost per agent is O(Nz × N2), implying a computational complexity

of order O(N4) for the worst case where all the agents take relative measurement with respect

to all the other agents in the team, that is, Nz = N(N − 1). The memory cost per agent is of

order O(N2), which, due to the recursive nature of the IMDCL algorithm, is independent of

Nz. This cost is caused by the initialization (20) and update equation (33c), which are of order

N(N − 1)/2.

The analysis of the communication cost below is carried out for a multihop communication

strategy. The IMDCL requires communication only in the update stage, where landmark robots

should broadcast their landmark message to their respective master, and every agent should
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rebroadcast any update-message it receives. Let Nr be the number of the agents that have

made a relative measurement at the current time, that is, Nr ≤ N is the number of current

sequential interim masters. These robots should announce their identity and the number of

their landmark robots to the entire team for sequential update cuing purpose, incurring a

communication cost of order Nr per robot. Next, the team will proceed by sequentially processing

the relative measurements. Every agent can be a landmark of Na ≤ Nr agents and/or a master of

Nb ≤ (N − 1) agents. The updating procedure starts by a landmark robot sending its landmark

message to its active interim master, resulting in a total communication cost of O(Na) per

landmark robot at the end of update stage. Every active interim master passes an update message

to the entire team, resulting in a total communication cost of O(Nb) per robot. Because there are

Nr masters, at the end of the update stage, every robot incurs a communication cost of O(Nr×Nb)

to pass the update messages. Because Na, Nr < Nr × Nb ≤ Nz, the total communication

cost at the end of the update stage O(Nz) per agent, implying a worst case broadcast cost of

O(N2) per agent. If the communication range is unbounded, the broadcast cost per agent is

O(max{Nb, Na}), with the worst case cost of O(N). The communication message size of each

agent in both single or multiple relative measurements is independent of the group size N . As

such, for the worst case scenario the communication message size is of O(1).

The results of the analysis above are summarized in Table I and are compared to those of a

trivial decentralized implementation of the EKF for CL (denoted by T-DCL) in which every agent

i ∈ V at the propagation stage computes (16)–using the broadcasted Fj(k) from every other team

member j ∈ V\{i}–and at the update stage computes (19) and (18)–using the broadcast (a, b, ra,

Sab, H̃a, H̃b, Ra, Pa-, Pb-) from agent a that has made relative measurement from agent b. Agent
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a calculates Sab, H̃a, H̃b by requesting (x̂b-, Pb-) from agent b. Here, it is assume that multiple

measurements are processed sequentially and that the communication procedure is multihop.

Although the overall cost of the T-DCL algorithm is comparable with the IMDCL algorithm,

this implementation has a more stringent communication connectivity condition, requiring a

strongly connected digraph topology (that is, all the nodes on the communication graph can be

reached by every other node on the graph) at each time step, regardless of whether there is a

relative measurement incidence in the team. As an example, notice that the communication graph

of Figure 2 is not strongly connected and as such the T-DCL algorithm can not be implemented

whereas the IMDCL algorithm can be. Recall that the IMDCL algorithm needs no communication

at the propagation stage and it only requires an existence of a spanning tree rooted at the agent

making the relative measurement at the update stage. Finally, the IMDCL algorithm incurs less

computational cost at the propagation stage.

Algorithm 3 presents an alternative IMDCL implementation where, instead of storing and

evolving Πlj’s of the entire team, every agent only maintains the terms corresponding to its

own cross covariances; see (28) and (29). For example, in a team of N = 4, robot 1 maintains

{Π1
12,Π

1
13,Π

1
14} and robot 2 maintains {Π2

21,Π
2
23,Π

2
24}. However, now the interim master a

needs to acquire the Πbj’s from the landmark robot b and calculate and broadcast Γi, i ∈ V

to the entire team; see (30), (31) and (33). In this alternative implementation, the processing

and storage cost of every agent is reduced from O(N2) to O(N), however the communication

message size is increased from O(1) to O(N).
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Tightly coupled versus loosely coupled DCL: a numerical comparison study

The IMDCL falls under the tightly coupled DCL classification. Figure 7 demonstrates the

positioning accuracy (time history of the root-mean square error (RMSE) plot for 50 Monte-Carlo

simulation runs) of this algorithm versus the loosely coupled EKF and covariance-intersection-

based algorithm of [25] in the following scenario. for this numerical study, consider again the 3

mobile robots employed in the numerical example of “Cooperative localization via EKF” with

motion as described in that section. The sensing scenario here is that, starting at t = 10 seconds,

robot 3 takes persistent relative measurements alternating every 50 seconds from robot 1 to robot

2 and vice versa. As expected, the tightly coupled IMDCL algorithm produces more accurate

position estimation results than those of the loosely coupled DCL algorithm of [25] (similar

results can be observed for the heading estimation accuracy, which is omitted here for brevity).

In the algorithm of [25], every robot keeps an EKF estimation of its own pose. When a

robot takes a relative pose measurement from another robot (here, also refer to the robot taking

the relative measurement as the interim master), it acquires the current position estimate and the

corresponding error covariance of the landmark robot to use along with its own current estimate

and the current relative measurement to extract a new state estimate and the corresponding error

covariance for the landmark robot. Next, the interim master robot transmits this new estimate to

the landmark robot, which uses the covariance intersection method to fuse it, consistently, to its

current pose estimate. It is interesting to notice that in this particular scenario, even though robot

3 has been taking all the relative measurements, it receives no benefit from such measurements,

because only the landmark robots are updating their estimates; see Figure 7. Even though the
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positioning accuracy of algorithm [25] is lower, it only requires O(1) computational cost per

agent as compared to the O(N2) cost of the IMDCL algorithm. However, it also requires more

complicated calculations to perform covariance intersection fusion. If the communication range

of each agent covers the entire team, then interestingly the communication cost of these two

algorithms is the same because both use an O(1) landmark and update messages. However, if the

communication range is bounded, the loosely coupled algorithm of [25] offers a more flexible

and cost-effective communication policy.

Conclusions

This paper presented a brief review on cooperative localization as a strategy to increase the

localization accuracy of a team of mobile agents with communication capabilities. This strategy

relies on use of agent-to-agent relative measurements (no reliance on external features) as a feed-

back signal to jointly estimate the poses of the team members. In particular, this paper discussed

challenges involved in designing decentralized cooperative localization algorithms. Moreover,

it presented a decentralized cooperative localization algorithm that is exactly equivalent to the

centralized EKF algorithm of [22]. In this decentralized algorithm, the propagation stage is fully

decoupled, that is, the propagation is a local calculation and no intra-network communication is

needed. The communication between agents is only required in the update stage when one agent

makes a relative measurement with respect to another agent. The algorithm declares the agent

made the measurement as interim master that can, by using the data acquired from the landmark

agent, calculate, and deliver by broadcast the update terms for the rest of the team. Future

extensions of this work includes handling message dropouts and asynchronous measurement
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updates.
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Algorithm 1 EKF CL (centralized)
Require: Initialization (k = 0): For i ∈ V , the algorithm is initialized at

x̂i+(0)∈Rni
, Pi+(0)∈Mni ,P+

ij(0) = 0ni×nj , j∈V\{i}.

Iteration k

1: Propagation: for i ∈ V , the propagation equations are

x̂i-(k+1)= f i(x̂i+(k),ui(k)), (16a)

Pi-(k+1)= Fi(k)Pi+(k)Fi(k)>+Gi(k)Qi(k)Gi(k)>, (16b)

P-
ij(k+1)= Fi(k)P+

ij(k)Fj(k)>, j ∈ V\{i}. (16c)

2: Update: While there are no relative measurements no update happens, that is,

x̂+(k + 1) = x̂-(k + 1), P+(k + 1) = P-(k + 1).

When there is a relative measurement at time step k+ 1, for example robot a makes a relative measurement of robot b, the update proceeds

as below. The innovation of the relative measurement and its covariance are, respectively,

ra = zab − hab(x̂a-(k + 1), x̂b-(k + 1)),

and

Sab = Ra(k + 1) + H̃a(k + 1)Pa-(k + 1)H̃a(k + 1)> + H̃b(k + 1)Pb-(k + 1)H̃b(k + 1)>

− H̃b(k + 1)P-
ba(k + 1)H̃a(k + 1)> − H̃a(k + 1)P-

ab(k + 1)H̃b(k + 1)>. (17)

The estimation updates for the centralized EKF are

x̂i+(k+1)=x̂i-(k+1) + Ki(k+1)ra(k+1), (18a)

Pi+(k+1)=Pi-(k+1)−Ki(k+1)Sab(k+1)Ki(k+1)>, (18b)

P+
ij(k+1)=P-

ij(k+1)−Ki(k+1)Sab(k+1)Kj(k+1)>, (18c)

where i ∈ V , j ∈ V\{i} and

Ki = (P-
ib(k + 1)H̃

>
b −P-

ia(k + 1)H̃
>
a )Sab

−1. (19)

3: k ← k + 1
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Algorithm 2 IMDCL
Require: Initialization (k = 0): Every agent i ∈ V initializes its filter at

x̂i+(0) ∈ Rni
,Pi+(0) ∈ Mni , Φi(0) = Ini , Πi

jl(0) = 0nl×nj , j ∈ V\{N}, l ∈ {j + 1, · · · , N}. (20)

Iteration k

1: Propagation: Every agent i ∈ V propagates the variables below

x̂i-(k+1)= f i(x̂i+(k),ui(k)), Pi-(k+1)=Fi(k)Pi+(k)Fi(k)>+Gi(k)Qi(k)Gi(k)>, Φi(k+1)=Fi(k)Φi(k). (21)

2: Update: while there are no relative measurements in the network, every agent i ∈ V updates its variables as

x̂i+(k + 1) = x̂i-(k + 1), Pi+(k + 1) = Pi-(k + 1), Πi
jl(k + 1) = Πi

lj(k), j ∈ V\{N}, l ∈ {j + 1, · · · , N}. (22)

If there is an agent a that makes a measurement with respect to another agent b, then agent a is declared as the interim master and acquires

the following information from agent b

landmark-message =
(
x̂b-(k + 1),Φb(k + 1),Pb-(k + 1)

)
. (23)

Agent a makes the following calculations upon receiving the landmark-message

ra = zab − hab(x̂a-, x̂b-), (24a)

Sab = Ra + H̃aPa-H̃
>
a + H̃

>
b Pb-H̃b − H̃aΦaΠa

abΦ
b>H̃

>
b − H̃bΦ

bΠa
baΦa>H̃

>
a , (24b)

Γa = ((Φa)−1ΦaΠa
abΦ

b>H̃
>
b − (Φa)−1Pa-H̃

>
a )Sab

− 1
2 , Γb = ((Φb)−1Pb-H̃

>
b −Πa

baΦa>H̃
>
a )Sab

− 1
2 , (24c)

where H̃a(k + 1) = H̃a(x̂a-, x̂b-) and H̃b(k + 1) = H̃b(x̂a-, x̂b-) are obtained using (6).

The interim master passes the following data, either directly or indirectly (by message passing), to the rest of the agents in the network

update-message =
(
a, b, r̄a,Γa,Γb,Φ

b>H̃
>
b Sab

− 1
2 ,Φa>H̃

>
a Sab

− 1
2

)
. (25)

Every agent i ∈ V , upon receiving the update-message, first calculates, ∀j ∈ V\{a, b}, using information obtained at k:

Γj = Πi
jbΦ

b>H̃
>
b Sab

− 1
2 −Πi

jaΦa>H̃
>
a Sab

− 1
2 , (26)

and then updates the following variables

x̂i+(k+1) = x̂i-(k+1)+Φi(k+1) Γi r̄a, (27a)

Pi+(k+1) = Pi-(k+1)−Φi(k+1)ΓiΓ
>
i Φi(k+1)>, (27b)

Πi
jl(k+1) = Πi

jl(k)−ΓjΓ
>
l , j∈V\{N}, l∈{j + 1, · · · , N}. (27c)

3: k ← k + 1
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Algorithm 3 Alternative IMDCL (larger communication message size in favor of lower

computation and storage cost per agent)
Require: Initialization (k = 0): Every agent i ∈ V initializes its filter at

x̂i+(0) ∈ Rni
,Pi+(0) ∈ Mni , Φi(0) = Ini , Πi

ij(0) = 0ni×nj , j ∈ V\{i}. (28)

Iteration k

1: Propagation: Every agent i ∈ V propagates the variables below

x̂i-(k+1)= f i(x̂i+(k),ui(k)), Pi-(k+1)=Fi(k)Pi+(k)Fi(k)>+Gi(k)Qi(k)Gi(k)>, Φi(k+1)=Fi(k)Φi(k). (29)

2: Update: while there are no relative measurements in the network, every agent i ∈ V updates its variables as

x̂i+(k + 1) = x̂i-(k + 1), Pi+(k + 1) = Pi-(k + 1), Πi
ij(k + 1) = Πi

ij(k), j ∈ V\{i}.

If there is an agent a that makes a measurement with respect to another agent b, then agent a is declared as the interim master and acquires

the following information from agent b

landmark-message =
(
x̂b-(k + 1),Φb(k + 1),Pb-(k + 1),Πb

bj(k) where j ∈ V\{a, b}
)
. (30)

Agent a makes the following calculations upon receiving the landmark-message

ra = zab − hab(x̂a-, x̂b-), (31a)

Sab = Ra + H̃aPa-H̃
>
a + H̃

>
b Pb-H̃b − H̃aΦaΠa

abΦ
b>H̃

>
b − H̃bΦ

b(Πa
ab)>Φa>H̃

>
a , (31b)

Γa = ((Φa)−1ΦaΠa
abΦ

b>H̃
>
b − (Φa)−1Pa-H̃

>
a )Sab

− 1
2 , Γb = ((Φb)−1Pb-H̃

>
b − (Πa

ab)>Φa>H̃
>
a )Sab

− 1
2 , (31c)

Γj = (Πb
bj)>Φb>H̃

>
b Sab

− 1
2 − (Πi

aj)>Φa>H̃
>
a Sab

− 1
2 , j ∈ V\{a, b}, (31d)

where H̃a(k + 1) = H̃a(x̂a-, x̂b-) and H̃b(k + 1) = H̃b(x̂a-, x̂b-) are obtained using (6).

The interim master passes the following data, either directly or indirectly (by message passing), to the rest of the agents in the network

update-message =
(
a, b, r̄a,Γ1, · · · ,ΓN

)
. (32)

Every agent i ∈ V , upon receiving the update-message, updates the following variables

x̂i+(k+1) = x̂i-(k+1)+Φi(k+1) Γi r̄a, (33a)

Pi+(k+1) = Pi-(k+1)−Φi(k+1)ΓiΓ
>
i Φi(k+1)>, (33b)

Πi
ij(k+1) = Πi

ij(k)−ΓiΓ
>
j , j ∈ V\{i}. (33c)

3: k ← k + 1
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TABLE I: Complexity analysis per agent of the IMDCL algorithm (denoted by IM-DCL)

compared to that of the trivial decentralized implementation of EKF for CL (denoted by T-

DCL) introduced in Subsection .

Computation Storage Broadcast? Message Size Connectivity

Algorithm IM-DCL T-DCL IM-DCL T-DCL IM-DCL T-DCL IM-DCL T-DCL IM-DCL T-DCL

Propagation O(1) O(N2) O(N2) O(N2) 0 O(N) 0 O(1) None strongly

connected

digraph

Update per Nz

relative measur.
O(Nz×N2) O(Nz×N2) O(N2) O(N2) O(Nz) O(Nz) O(1) O(1)

interim mas-

ter can reach

all the agents
Overall worst case O(N4) O(N4) O(N2) O(N2) O(N2) O(N2) O(1) O(1)

∗Broadcast cost is for multihop communication. If the communication range is unbounded, the broadcast cost per agent is O(max{Nb, Na})

with the worst cost of O(N).
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Figure 1: Schematic representation of common probabilistic localization techniques for mobile platforms: In

beacon-based localization, the map of the area is known and there are pre-installed beacons or landmarks with

known locations and identities. By taking relative measurements with respect to these landmarks, the mobile agents

can improve their localization accuracy. For operations where a priori knowledge about the environment is not

available, but nevertheless, the environment contains fixed and distinguishable features that agents can measure,

SLAM is normally used to localize the mobile agents. Simultaneous localization and mapping (SLAM) is a process

by which a mobile agent can build a map of an environment and at the same time use this map to deduce its location.

On the other hand, GPS navigation provides location and time information in all weather conditions, anywhere on

or near the earth but it requires an clear line of sight to at least four GPS satellites.
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Figure 2: A multihop communication scenario for the multi-robot team. (a) shows the communication and

measurement ranges. Here, robots 1 and 6 make relative measurements, respectively, of robots 2 and 3. (b) shows

the communication graph generated using the communication ranges given in plot (a). Here the robot at the head

of an arrow can send information to the robot at the tip of the arrow. As this graph shows, each of robots 1 and 6

can pass communication message to the entire team via a multihop strategy.
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Figure 3: Estimation error (solid line) and 3σ error bounds (dashed lines) in the x−coordinate variable for 3 robots

moving on a flat terrain when they (a) only propagate their equations of motion using self-motion measurements

(black plots), (b) employ cooperative localization ignoring past correlations between the estimates of the robots

(blue plots), (c) employ cooperative localization with accurate account of past correlations (red plots). The figures

on the right column are the same figures as on the left where the localization case (a) is removed for clearer

demonstration of cases (b) and (c). Here, a→ b over the time interval marked by two vertical blue lines indicates

that robot a has taken a relative measurement with respect to robot b at that time interval. The symbol a → a

means that robot a obtains an absolute measurement.
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Figure 4: Trajectories of the robots for the simulation study of Figure 3. Here, the gray curve is the ground truth.

The red curve is the estimates of the trajectory by implementing a EKF CL. The blue (resp. green) ellipses show

the 95% uncertainty regions for the estimations at 2 seconds before (resp. after) any change in the measurement

scenario (see Figure 3)

39



Figure 5: Schematic representation of the DCL classification based on the type of accounting for past correlations.
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Figure 6: The in-network information flow of the IMDCL algorithm. In the IMDCL algorithm, communication

is only needed in the update stage when the team members use a robot-to-robot relative measurement feedback to

correct their pose estimation. Here, it is assumed that all the team members are in the communication range of the

interim master robot.

41



t [sec]
0 50 100 150 200

p
o
si
ti
o
n
R
M
S
E

[m
]

0

10

20

30

40

50

Robot 1

t [sec]
0 50 100 150 200

p
os
it
io
n
R
M
S
E

[m
]

0

10

20

30

40

50

Robot 2

t [sec]
0 50 100 150 200

p
os
it
io
n
R
M
S
E

[m
]

0

5

10

15

20

Robot3

Figure 7: A comparison study between the positioning accuracy of three robots employing the interim master

decentralized cooperative localization (IMDCL) algorithm (red plots), with that from the extended Kalman filter

covariance intersection based CL algorithm of [25] (dashed green plot). The curves in black show the positioning

accuracy when the robots do not use any cooperative localization. As expected, the IMDCL algorithm by keeping

an accurate account of the cross covariances produces more accurate localization results than the algorithm of [25]

. However, this higher accuracy comes with higher communication and processing cost per robot. Notice here that

using algorithm of [25] robot 3 does not get to update its estimation equations.
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Sidebar 1

Further Reading

A performance analysis of an EKF CL for a team of homogeneous robots moving on a flat

terrain, with the same level of uncertainty in their proprioceptive measurements and exteroceptive

sensors that measure relative pose, is provided in [S1] and [S2]. Interestingly, [S1] shows

that the rate of uncertainty growth decreases as the size of the robot team increases, but is

subject to the law of diminishing returns. Moreover, [S2] shows that the upper bound on the

rate of uncertainty growth is independent of the accuracy or the frequency of the robot-to-robot

measurements. The consistency of EKF CL from the perspective of observability is studies

in [S3]. [S3] analytically shows that the error-state system model employed in the standard EKF

CL always has an observable subspace of higher dimension than that of the actual nonlinear CL

system. This results in an unjustified reduction of the EKF covariance estimates in directions of

the state space where no information is available, and thus leads to inconsistency. To address this

problem, [S3] adopts an observability-based methodology for designing consistent estimators in

which the linearization points are selected to ensure a linearized system model with an observable

subspace of the correct dimension. More results on observability analysis of CL can be found

in [22], [S4], [S5]. The use of an observability analysis to explicitly design an active local path-

planning algorithm for unmanned aerial vehicles implementing a bearing-only CL is discussed

in [S6]. The necessity for an initialization procedure for CL is discussed in [S7], and it is shown

that, because of system nonlinearities and the periodicity of the orientation, initialization errors

can lead to erroneous results in covariance-based filters. An initialization procedure for the state
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estimate in a CL scenario based on ranging and dead reckoning is studied in [S8].
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