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Abstract. In this work, we design distributed control laws for spatial self-organization of multi-6
agent swarms in 1D and 2D spatial domains. The objective is to achieve a desired density distribution7
over a simply-connected spatial domain. Since individual agents in a swarm are not themselves of8
interest and we are concerned only with the macroscopic objective, we view the network of agents in9
the swarm as a discrete approximation of a continuous medium and design control laws to shape the10
density distribution of the continuous medium. The key feature of this work is that the agents in11
the swarm do not have access to position information. Each individual agent is capable of measuring12
the current local density of agents and can communicate with its spatial neighbors. The network13
of agents implement a Laplacian-based distributed algorithm, which we call pseudo-localization, to14
localize themselves in a new coordinate frame, and a distributed control law to converge to the15
desired spatial density distribution. We start by studying self-organization in one-dimension, which16
is then followed by the two-dimensional case.17

1. Introduction. Self-organization in swarms refers broadly to the emergence18

of patterns of long-range order in large collectives of dynamic agents which interact19

locally with each other. Self-organization is a pervasive phenomenon in nature, ob-20

served in biological [6] and other natural systems [27]. This has greatly inspired the21

development of large scale robotic counterparts [23], with applications to monitoring,22

manipulation, and construction. This transition does not merely involve an increase in23

the size of robotic networks, but it also introduces new theoretical challenges for their24

analysis and control design. In particular, large groups of agents have some essen-25

tial characteristics that distinguish them from other smaller-scale counterparts. In a26

swarm, individual agents have no significance and only the macroscopic objectives are27

relevant. A swarm largely remains unaffected by the removal of a large, but discrete,28

number of agents. Moreover, it is difficult (and needlessly complicated) to specify29

the global configuration of the swarm using the states of individual agents; instead,30

employing macroscopic quantities such as the swarm spatial density distribution to31

specify its configuration is more appropriate. From an analysis and control-theoretic32

viewpoint, the dynamic modeling of swarms is less explored, which e.g. can be es-33

tablished by means of PDEs, for which control theoretic tools are less well developed34

in comparison to ODEs. These theoretical challenges motivate the investigation of35

self-organization in large-scale swarms.36

In the literature, Markov-chain based methods have been widely used in address-37

ing some of the key theoretical problems pertaining to swarm self-organization. By38

means of it, the swarm configuration is described through the partitioning the spatial39

domain in a finite number of larger size disjoint subregions, on which a probability40

distribution is defined. Then, the self-organization problem is reduced to the design41

of the transition matrix governing the evolution of this probability density function42
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to ensure its convergence to a desired profile. A recent approach to density control43

using Markov chains is presented in [10], which includes additional conflict-avoidance44

constraints. In this setting every agent is able to determine the bin to which it be-45

longs at every instant of time, which essentially means that individual agents have46

self-localization capabilities. Also, the dimensional transition matrix is synthesized47

in a central way at every instant of time by solving a convex optimization problem.48

In [3], the authors make use of inhomogeneous Markov chains to minimize the number49

of transitions to achieve a swarm formation. In this approach, the algorithm necessi-50

tates the estimation of the current swarm distribution, and computes the transition51

Markov matrices for each agent, at each instant of time. The fact that every agent52

needs to have an estimate of the global state (swarm distribution) at every time may53

not be desirable or feasible. The localization of each agent still remains to be a main54

assumption. Under similar conditions, one can find the manuscripts [1] and [7], which55

describe probabilistic swarm guidance algorithms. In [5], the authors present an ap-56

proach to task allocation for a homogeneous swarm of robots. This is a Markov-chain57

based approach, where the goal is to converge to the desired population distribution58

over the set of tasks.59

In the context of robotic swarms, programmable self-assembly of two-dimensional60

shapes with a thousand-robot swarm is demonstrated in [24]. These robots are capable61

of measuring distances to nearby neighbors which they use to localize themselves62

relative to other localized robots. Each robot then uses its position to implement an63

edge-following algorithm.64

Another approach uses partial differential equations to model swarm behaviour,65

and control action is applied along the boundary of the swarm. Previous works on66

PDE-based methods with boundary control include [14], where the authors present67

an algorithm for the deployment of agents onto families of planar curves. Here, the68

swarm collective dynamics are modeled by the reaction-advection-diffusion PDE and69

the particular family of curves to which the swarm is controlled to is parametrized by70

the continuous agent identity in the interval of unit length. An extension of this work71

to deployment on a family of 2D surfaces in 3D space can be found in [22]. More-72

over, in [13] the authors present a distributed optimal control problem formulation for73

swarm systems, where microscopic control laws are derived from the optimal macro-74

scopic description using a potential function approach. The problem of position-free75

extremum-seeking of an external scalar signal using a swarm of autonomous vehicles,76

inspired by bacterial chemotaxis, has been studied in [21].77

In this work, we adopt a viewpoint outlined in [2], wherein we make an amorphous78

medium abstraction of the swarm, which is essentially a manifold with an agent79

located at each point. We then model the system using PDEs and design distributed80

control laws for them. An important component of this paper is the Laplacian-81

based distributed algorithm which we call pseudo-localization algorithm, which the82

agents implement to localize themselves in a new coordinate frame. The convergence83

properties of the graph Laplacian to the manifold Laplacian have been studied in [4],84

which find useful applications in this paper.85

The main contribution of this paper is the development of distributed control laws86

for the index- and position-free density control of swarms to achieve general 1D and87

a large class of 2D density profiles. In very large swarms with thousands of agents,88

particularly those deployed indoors or at smaller scales, presupposing the availability89

of position information or pre-assignment of indices to individual agents would be a90

strong assumption. In this paper, in addition to not making the above assumptions,91

the agents are only capable of measuring the local density, and in the 2D case, the92
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density gradient and the normal direction to the boundary.93

Under these assumptions, we present distributed pseudo-localization algorithms94

for one and two dimensions that agents implement to compute their position identi-95

fiers. Since every agent occupies a unique spatial position, we are able to rigorously96

characterize the resulting position assignment as a one-to-one correspondence between97

the set of spatial coordinates and the set of position identifiers, which corresponds98

to a diffeomorphism of the continuum domain. Based on this assignment, we then99

design control strategies for self-organization in one and two dimensions under the100

assumption that the motion control of agents is noiseless. The extension to the 2D101

case leads to new difficulties related to the control of the swarm boundaries. To ad-102

dress these, we implement a variant of the 1D pseudo-localization algorithm at the103

boundary during an initialization phase. A preliminary version of this work appeared104

in [18] where we presented an outline of the algorithms and state some of the results.105

We develop them here rigorously, providing detailed proofs for our claims.106

The paper is organized as follows. In Section 2, we introduce the basic notation107

and preliminary concepts used in the manuscript. We present the analysis of self-108

organization in one dimension in Section 4, where we introduce the pseudo-localization109

algorithm in Section 4.1 and the distributed control law in Section 4.2. After this, we110

generalize and extend the analysis for self-organization in two dimensions in Section 5.111

Section 6 contains numerical simulations of the results in the paper, and in Section 7,112

we present our conclusions.113

2. Preliminaries. Let R denote the set of all real numbers, R≥0 the set of non-114

negative real numbers, and Rn the n-dimensional Euclidean space. We use boldface115

letters to denote vectors in Rn. The norm |x| of a vector x ∈ Rn is the standard116

Euclidean 2-norm, unless otherwise specified. Let ∇ =
(

∂
∂x1

, . . . ∂
∂xn

)
denote the117

gradient operator in Rn when acting on real-valued functions and the Jacobian in118

the context of vector-valued functions. As a shorthand, we let ∂
∂z (·) = ∂z(·) for a119

variable z. Let ∆ =
∑n
i=1

∂2

∂x2
i

be the Laplace operator in Rn. We denote by either120

Ṡ or dS
dt the total time derivative of S(t). Given functions f, g : R → R, we write121

f = O(g) if there exist positive constants C and c such that |f(h)| ≤ C|g(h)|, for122

all |h| ≤ c. Let S denote the set of agents in the swarm, and N its cardinality. For123

the 1D case, let l ∈ S denote the leftmost agent, and r ∈ S the rightmost one. Let124

Ni denote the spatial neighborhood of agent i, which comprises those agents located125

inside a small ball centered at i. A set-valued mapping, denoted by f : R ⇒ R2,126

maps the set of real numbers onto subsets of R2. For a bounded open set Ω ⊂ Rn,127

∂Ω denotes its boundary, Ω̄ = Ω ∪ ∂Ω its closure and Ω̊ = Ω \ ∂Ω its interior with128

respect to the standard Euclidean topology. The set of smooth real-valued functions129

on Ω is denoted by C∞(Ω). We let µ (or dx in 1D) denote the standard Lebesgue130

measure; with a slight abuse of notation, we sometimes omit dµ (resp. dx in 1D) from131

long integrals. The Dirac measure δ on Ω defined for any x ∈ Ω and any measurable132

set D ⊆ Ω is given by δx(D) = 1 for x ∈ D, and δx(D) = 0 for x /∈ D.133

For two non-empty subsets M1 and M2 of a metric space (M,d), the Hausdorff134

distance dH(M1,M2) between them is defined as:135

dH(M1,M2) = max{ sup
x∈M1

inf
y∈M2

d(x, y), sup
y∈M2

inf
x∈M1

d(x, y)}.(1)136

137

The set of functions on a measurable space U , given by Lp(U) = {f : U → R | ‖f‖Lp(U) =138
(∫
U
|f |pdµ

)1/p
< ∞}, constitute the Lp space, where ‖ · ‖Lp(U) is the Lp norm. Of139
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particular interest is the L2 space, or the space of square-integrable functions. In140

this paper, we denote by ‖f‖L2(U) the L2 norm of f with respect to the Lebesgue141

measure, and by ‖f‖L2(U,ρ) the weighted L2 norm (with the strictly positive weight ρ142

on U). The Sobolev space W 1,p(U) over a measurable space U is defined as W 1,p(U) =143

{f : U → R | ‖f‖W 1,p =
(∫
U
|f |p +

∫
U
|∇f |p

)1/p
< ∞}. Of particular interest is the144

space W 1,2, also called the H1 space. For two functions f(t, ·) and g(·), we denote by145

f →L2 g the convergence in L2 norm (over the domain U of the functions) of f(t, ·)146

to g(·) as t → ∞, that is, limt→∞ ‖f(t, ·) − g(·)‖L2 = 0. Convergence in H1 norm is147

denoted similarly by f →H1 g.148

We now state some well-known results that we will be used in the subsequent149

sections of this paper.150

Lemma 2.1. (Divergence Theorem [9]). For a smooth vector field F over a151

bounded open set Ω ⊆ Rn with boundary ∂Ω, the volume integral of the divergence152

∇ · F of F over Ω is equal to the surface integral of F over ∂Ω:153

∫

Ω

(∇ · F) dµ =

∫

∂Ω

F · n dS,(2)154
155

where n is the outward normal to the boundary and dS the measure on the boundary.156

For a scalar field U and a vector field F defined over Ω ⊆ Rn:157

∫

Ω

(F · ∇U) dµ =

∫

∂Ω

U(F · n) dS −
∫

Ω

U(∇ · F) dµ.158
159

Lemma 2.2. (Leibniz Integral Rule [9]). Let f ∈ C∞(R×Rn) and Ω : R ⇒ Rn160

be a smooth one-parameter family of bounded open sets in Rn generated by the flow161

corresponding to the smooth vector field v on Rn. Then:162

d

dt

(∫

Ω(t)

f(t, r) dµ

)
=

∫

Ω(t)

∂t(f(t, r)) dµ+

∫

∂Ω(t)

f(t, r)v · n dS.163

164

Corollary 2.3. (Derivative of Energy Functional). Let U be an energy165

functional defined as follows:166

U =
1

2

∫

Ω

|f |2 dµ,167
168

for some function f : Ω→ R. Then,169

∂tU =

∫

Ω

f ·
(
df

dt

)
dµ+

1

2

∫

Ω

|f |2∇ · v dµ.170
171

where d
dt = ∂t + v · ∇ is the total derivative.172

Proof. We have included the proof for this corollary for the sake of completeness.173

Using the Leibniz integral rule and the Divergence theorem, we have (it is understood174
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that the integrations are with respect to the measure µ):175

∂U

∂t
=

∫

Ω

f · ft +
1

2

∫

∂Ω

|f |2v · n176

=

∫

Ω

f · ft +
1

2

∫

Ω

∇ · (|f |2v)177

=

∫

Ω

f · ft +

∫

Ω

f · (v · ∇)f +
1

2

∫

Ω

|f |2∇ · v178

=

∫

Ω

f · (ft + (v · ∇)f) +
1

2

∫

Ω

|f |2∇ · v179

=

∫

Ω

f ·
(
df

dt

)
+

1

2

∫

Ω

|f |2∇ · v.180
181

Lemma 2.4. (Poincaré-Wirtinger Inequality [20]). For p ∈ [1,∞] and Ω, a182

bounded connected open subset of Rn with a Lipschitz boundary, there exists a constant183

C depending only on Ω and p such that for every function u in the Sobolev space184

W 1,p(Ω):185

‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),186187

where uΩ = 1
|Ω|
∫

Ω
udµ, and |Ω| is the Lebesgue measure of Ω.188

Lemma 2.5. (Rellich-Kondrachov Compactness Theorem [12]). Let U ⊂189

Rn be open, bounded and such that ∂U is C1. Suppose 1 ≤ p < n, then W 1,p(U) is190

compactly embedded in Lq(U) for each 1 ≤ q < pn
n−p . Moreover, for [0, L] ⊂ R, the191

inclusion W 1,2([0, L]) ⊂ L2([0, L]) is also compact.192

Lemma 2.6. (LaSalle Invariance Principle [16, 26]). Let {P(t) | t ∈ R≥0}193

be a semigroup of nonlinear operators acting on U (closed subset of a Banach space194

with norm ‖ · ‖), and for any u ∈ U , define the positive orbit starting from u at t = 0195

as Γ+(u) = {P(t)u | t ∈ R≥0} ⊆ U (we assume {P(t) | t ∈ R≥0} to be such that the196

orbit Γ+(u) is smooth). Let V be a Lyapunov functional on U (such that V̇ (u) ≤ 0197

in U). Define E = {u ∈ U | V̇ (u) = 0}, and let Ẽ be the largest invariant subset198

of E. If for u0 ∈ U , the orbit Γ+(u0) is pre-compact (lies in a compact subset of U),199

then limt→+∞ d(P(t)u0, Ẽ) = 0, where d(y, Ẽ) = infx∈Ẽ ‖y − x‖.200

2.1. Continuum model of the swarm. Given that N , the number of agents201

in the swarm, is very large, we will analyze the swarm dynamics through a continuum202

approximation. Let t ∈ R≥0, and let M : R ⇒ Rn be a smooth one-parameter family203

of bounded open sets, such that the agents are deployed over M̄(t) at time t. We204

denote by ṙi(t) = vi, ∀i ∈ S, where ri(t) ∈ M̄(t) is the position of the ith agent in the205

swarm at time t. Let ρ : R≥0 × Rn → R≥0 be the spatial density function supported206

on M̄(t) for all t ≥ 0 (with ρ(t, r) > 0 for r ∈ M̄(t)), such that
∫
M(t)

ρ(t, r)dµ = 1.207

We assume that M(t) is simply connected and that the boundary ∂M(t) does not208

self-intersect for all t ≥ 0.209

Assuming that ρ is smooth, the macroscopic dynamics can now be described by210

the continuity equation [9], assuming that the total number of agents is conserved:211

∂ρ

∂t
+∇ · (ρv) = 0, ∀ r ∈ M̊(t),(3)212

213

where v : R≥0 × Rn → Rn is the velocity field with vi(t) = v(t, ri), such that the214

one-parameter family M is generated by the flow associated with v.215
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2.2. Harmonic maps and diffeomorphisms. Let (M, g) and (N,h) be two216

Riemannian manifolds of dimensions m and n, and Riemannian metrics g and h,217

respectively. A map φ : M → N is called harmonic if it minimizes the functional:218

E(φ) =

∫

M

|dφ|2dvg,(4)219
220

where dvg is the Riemannian volume form on M , and |dφ| is the Hilbert-Schmidt221

norm of dφ given at each point x ∈M , in local coordinates (x1, . . . , xm) on M , by:222

|dφx|2 = gij(x)hαβ(φ(x))
∂φα

∂xi

∂φβ

∂xj
.(5)223

224

Here, we use the Einstein summation convention, where a summation is implicit over225

repeated superscript-subscript pairs (i.e., kili ≡
∑
i k
ili). When g and h are both the226

Euclidean metric δ (where δij = 1 if i = j and 0 otherwise), we have:227

|dφx|2 =
∑

α

∑

i

(
∂φα

∂xi

)2

.(6)228

229

The Euler-Lagrange equation for the functional E, which also yields the minimum230

energy, is given by ∆φ = 0, the Laplace equation [17]. It is useful to note that the231

solutions to the heat equation, in the limit t→∞, approach the harmonic map. This232

is proved later in Lemma 5.1, and forms the basis for the design of the distributed233

pseudo-localization algorithm. We now state a lemma on harmonic diffeomorphisms234

of Riemann surfaces (i.e., m = n = 2 above).235

Lemma 2.7. (Harmonic diffeomorphism [11]). Let (M, g) be a compact sur-236

face with boundary and (N,h) a compact surface with non-positive curvature. Suppose237

that ψ : M → N is a diffeomorphism onto ψ(M). Assume that ψ(M) is convex.238

Then there is a unique harmonic map φ : M → N with φ = ψ on ∂M , such that239

φ : M → φ(M) is a diffeomorphism.240

We note that the non-positive curvature constraint in the lemma is essentially a241

constraint on the metric h on N , and the curvature is zero for the Euclidean metric.242

3. Problem description and conceptual approach. In this section, we pro-243

vide a high-level description of the proposed problem and explain the conceptual idea244

behind our approach. The technical details can be found in the following sections.245

The problem at hand is to ultimately design a distributed control law for a swarm246

to converge to a desired configuration. Here, a swarm configuration is a density247

function ρ of the multi-agent system and the objective is that agents reconfigure248

themselves into a desired known density ρ∗. To do this, an agent at position x is able249

to measure the current local density value, ρ(t, x); however, its position x within the250

swarm is unknown. Thus, given ρ∗, an agent at x cannot directly compute ρ∗(x) nor251

a feedback law based on ρ − ρ∗. To solve this problem, we devise a mechanism that252

allows agents to determine their coordinates in a distributed way in an equivalent253

coordinate system.254

Note that, given a diffeomorphism Θ∗ from the spatial domain of the swarm onto255

the unit interval or disk (i.e. a coordinate transformation), we can equivalently pro-256

vide the agents with a transformed density function p∗, such that p∗ = ρ∗ ◦ (Θ∗)−1.257

In this way, instead of ρ∗ the agents are given p∗, but still do not have access to Θ∗.258

The pseudo-localization algorithm is a mechanism that agents employ to progressively259
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compute an appropriate (configuration-dependent) diffeomorphism by local interac-260

tions.261

In 1D, the pseudo-localization algorithm is a continuous-time PDE system in262

a new variable or pseudo-coordinate X which plays the role of an “approximate x263

coordinate” that agents can use to know where they are. The input to this system is264

the current density value ρ, see Figure 1 for an illustration, and the objective is that265

X converges to a ρ-dependent diffeomorphism. On the other hand, the variable X266

and the function p∗ are used to define the control input of another PDE system in the267

density ρ. In this way, we have a feedback interconnection of two systems, one in X268

and one in ρ, with the goal to achieve X → Θ∗ (the pseudo-coordinate X converges269

to a true coordinate given by Θ∗) and ρ→ ρ∗.

∂tX = G(X, ρ)

∂tρ = F (ρ, X, p∗)

{
X → Θ∗ (coordinates)

ρ → ρ∗ (objective)

Fig. 1: Feedback interconnection of pseudo-localization system in X and system in ρ
in the 1D case. The function p∗ is an equivalent density objective provided to agents
in terms of a diffeomorphism Θ∗. The variables X play the role of coordinates and
eventually converge to the true coordinates given by Θ∗. Agents use p∗ and X to
compute the control in the equation ρ. In turn, agents move and this will require a
re-computation of coordinates or update in X. The control strategy in the 2D case
(stages 2 and 3) can be interpreted similarly.

270
As for the control design methodology, we broadly follow a constructive, Lyapunov-271

based approach to designing distributed control laws for the swarm dynamics modeled272

by PDEs. For this, we define appropriate non-negative energy functionals that en-273

code the objective and choose control laws that keep the time derivative of the energy274

functional non-positive. This, along with well-known results on the precompactness275

of solutions as in Lemma 2.5, the Rellich Kondrachov compactness theorem, allows us276

to apply the LaSalle Invariance Principle in Lemma 2.6 and other technical arguments277

to establish the convergence results that we seek.278

In the 1D case, we can identify a set of diffeomorphisms Θ associated with any279

ρ that eventually converge to Θ∗, and simultaneously control boundary agents into280

a desired final domain (the support of ρ∗). These are given by the cumulative dis-281

tribution function associated with the density function; see Section 4.1. The 2D case282

is more complex, and analogous results could not be derived in their full generality.283

First, unlike the 1D case, a cumulative distribution does not lead to a diffeomorphism284

in general. Instead, we set out to find diffeomorphisms as the result of a distributed285

algorithm. Given that the discretization of heat flow naturally leads to distributed286

algorithms, we investigate under what conditions this is the case via harmonic map287

theory. On the control side, there also are additional difficulties, and because of this,288

we simplify the control strategy into three stages. In the first stage, the boundary289

agents are re-positioned onto the boundary of the desired domain while containing290

the others in the interior. Once this is achieved, the second and third stages can be291

seen again as the interconnection of two systems in pseudo-coordinates R = (X,Y )292
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(instead of X) and ρ, analogously to Figure 1. However, we apply a two time-scale293

separation for analysis by which coordinates are computed in a fast-time scale and294

reconfiguration is done in a slow-time scale, which allows for a sequential analysis of295

the two stages. We then study the robustness of this approach.296

4. Self-organization in one dimension. In this section, we present our pro-297

posed pseudo-localization algorithm and the distributed control law for the 1D self-298

organization problem.299

Mathematically, for each t ∈ R≥0, letM(t) = [0, L(t)] ⊂ R be the interval in which300

the agents are distributed in 1D, and let ρ : R× R→ R≥0 be the normalized density301

function supported on M(t), for all t ≥ 0 (with ρ(t, x) > 0, ∀x ∈M(t)), describing the302

swarm on that interval. Without loss of generality, we place the origin at the leftmost303

agent of the swarm. We also assume that the leftmost and the rightmost agents, l304

and r, are aware that they are at the boundary. Let ρ∗ : M∗ = [0, L∗]→ R>0 be the305

desired normalized density distribution.306

Since a direct feedback control law can not be implemented by agents because307

they do not have access to their positions, we introduce an equivalent representation308

of the density ρ∗, p∗, depending on a particular diffeomorphism Θ∗. First, define309

Θ∗ : M∗ → [0, 1] such that Θ∗(x) =
∫ x

0
ρ∗(x̄)dx̄ and Θ∗(L∗) = 1.310

Now, let p∗ : [0, 1] → R>0, and θ∗ ∈ Θ∗(M∗) = [0, 1], be such that p∗(θ∗) =311

ρ∗((Θ∗)−1(θ∗)) = ρ∗(x).312

ρ∗(x) = p∗(θ∗)

x ∈ [0, L∗] Θ∗(x) = θ∗ ∈ [0, 1]

ρ∗

Θ∗

p∗

The function p∗, which represents the desired density distribution mapped onto313

the unit interval [0, 1], is computed offline and is broadcasted to the agents prior to314

the beginning of the self-organization process. We use p∗ to derive the distributed315

control law which the agents implement. We assume that p∗ is a Lipschitz function316

in the sequel.317

4.1. Pseudo-localization algorithm in one dimension. We first consider318

the static case, that is, the design of the pseudo-localization dynamics on X of the319

upper block in Figure 1, when the agents and ρ are stationary. We define Θ : M =320

[0, L]→ [0, 1] as:321

Θ(x) =

∫ x

0

ρ(x̄)dx̄,(7)322
323

such that Θ(L) = 1. In other words, Θ is the cumulative distribution function (CDF)324

associated with ρ. (Note that the domains are static and hence the argument t has325

been dropped, which will be reintroduced later.)326

Lemma 4.1. (The CDF diffeomorphism). Given ρ : M → R>0 a smooth327

function, the mapping Θ : M → [0, 1] as defined above, is a diffeomorphism and328

Θ(M) = [0, 1].329

Proof. Since ρ(x) > 0, ∀x ∈M , it follows that Θ is a strictly increasing function330

of x, and is therefore a one-to-one correspondence on M . Moreover, Θ is smooth331

and has a differentiable inverse, which implies it is a diffeomorphism. Finally, since332

Θ(L) = 1, we have Θ(M) = [0, 1].333
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Our goal here is to set up a partial differential equation with appropriate boundary334

conditions that yield the diffeomorphism Θ as its asymptotically stable steady-state335

solution. We begin by setting up the pseudo-localization dynamics for a stationary336

swarm (for which the spatial domain M and the density distribution ρ are fixed). Let337

X : R×M → R be such that (t, x) 7→ X(t, x) ∈ R, with:338

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
,

X(t, 0) = α(t),

X(t, L) = β(t),

∂tα(t) = −α(t),

∂tβ(t) = 1− β(t),

X(0, x) = X0(x),

(8)339

340

where α : R→ R is a control input at the boundary x = 0 and β : R→ R is a control341

input at the boundary x = L. From (7), we observe that ∂x

(
∂xΘ
ρ

)
= 0. Letting342

w = X −Θ denote the error, we obtain:343

∂tw =
1

ρ
∂x

(
∂xw

ρ

)
,

w(t, 0) = α(t),

w(t, L) = β(t)− 1,

∂tw(t, 0) = −w(t, 0),

∂tw(t, L) = −w(t, L),

w(0, x) = w0(x) = X0(x)−Θ(x).

(9)344

345

346

Assumption 4.2. (Well-posedness of the pseudo-localization dynamics).347

We assume that the pseudo-localization dynamics (8) (and (9)) is well-posed, that348

the solution is sufficiently smooth (at least C2 in the spatial variable, even as t→∞)349

and belongs to the Sobolev space H1(M) for every t ∈ R≥0.350

Lemma 4.3. (Pointwise convergence to diffeomorphism). Under Assump-351

tion 4.2, on the well-posedness of the pseudo-localization dynamics, and for bounded ρ,352

the solutions to PDE (8) converge pointwise to the CDF diffeomorphism Θ defined in353

(7), as t→∞, for all smooth initial conditions X0.354

Proof. We prove that the solutions to the PDE (8) converge pointwise to the355

diffeomorphism Θ by showing that w → 0, as t→∞, pointwise for (9). For this, we356

consider a functional V , given by (integrations are taken with respect to the Lebesgue357

measure):358

V =
1

2

∫

M

ρ|w|2 +
1

2

∫

M

1

ρ
|∂xw|2.359

360

The time derivative V̇ is given by:361

V̇ =

∫

M

ρw(∂tw) +

∫

M

1

ρ
(∂xw)(∂t∂xw).362

363
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Here, replace ∂tw in the first integral with the dynamics in (9), and then use ∂t∂x =364

∂x∂t in the second integral together with the Divergence Theorem in Lemma 2.1. We365

obtain:366

V̇ =

∫

M

w∂x

(
∂xw

ρ

)
−
∫

M

∂x

(
∂xw

ρ

)
∂tw +

∂xw

ρ
∂tw

∣∣∣∣
L

− ∂xw

ρ
∂tw

∣∣∣∣
0

367

= −
∫

M

1

ρ
|∂xw|2 −

∫

M

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

+
w + ∂tw

ρ
∂xw

∣∣∣∣
L

− w + ∂tw

ρ
∂xw

∣∣∣∣
0

.368
369

(After the second equal sign, apply again the Divergence Theorem on the first integral370

of the previous line, and replace ∂tw from (9).) Substituting from (9), we have:371

V̇ = −
∫

M

1

ρ
|∂xw|2 −

∫

M

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

.372
373

Clearly, V̇ ≤ 0, and w(t, ·) ∈ H1(M), for all t. By the Rellich-Kondrachov Com-374

pactness Theorem of Lemma 2.5, H1(M) is compactly contained in L2(M). Thus,375

by the LaSalle Invariance Principle of Lemma 2.6, the solution to (9) converges to376

the largest invariant subset of V̇ −1(0). Note that V̇ = 0 implies
∫
M

1
ρ |∂xw|2 = 0.377

Thus, we have limt→∞
∫
M

1
ρ |∂xw|2 = 0. Since ρ is bounded (sup ρ < ∞), we have378

limt→∞
1

sup ρ

∫
M
|∂xw|2 ≤ limt→∞

∫
M

1
ρ |∂xw|2 = 0, which implies limt→∞

∫
M
|∂xw|2 =379

limt→∞ ‖∂xw‖2L2(M) = 0. Now, limt→∞ |w(t, x)| = limt→∞ |w(t, 0) +
∫ x

0
∂xw(t, ·)| ≤380

limt→∞ |w(t, 0)|+
∫ x

0
|∂xw(t, ·)| ≤ limt→∞ |w(t, 0)|+

√
L(t)‖∂xw(t, ·)‖L2(M) = 0 (since381

limt→∞ w(t, 0) = 0 and limt→∞ ‖∂xw(t, ·)‖L2(M) = 0). Thus, limt→∞ w(t, x) = 0, for382

all x ∈ M . Therefore, the solutions to (9) converge to w ≡ 0 pointwise, as t → ∞,383

from any smooth initial w0 = X0 −Θ.384

We now have that the solution to the pseudo-localization dynamics converges to385

the diffeomorphism Θ in the stationary case. For the dynamic case, we modify (8) to386

account for agent motion. Let X : R × R → R be supported on M(t) = [0, L(t)] for387

all t ≥ 0. Using the relation dX
dt = ∂tX + v∂xX, where v is the velocity field on the388

spatial domain, we consider:389

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
− v∂xX,

X(t, 0) = 0,

X(t, L(t)) = β(t),

X(0, x) = X0(x).

(10)390

391

In the dynamic case, and w.l.o.g. we have set α(t) = 0 for all t ≥ 0, for simplicity. We392

will use the above PDE system in the design of the distributed motion control law,393

redesigning the boundary control β to achieve convergence of the entire system. We394

now discretize (10) to obtain a distributed pseudo-localization algorithm. Let Xi(t) =395

X(t, xi), where xi ∈ M(t) is the position of the ith agent. We identify the agent i396

with its desired coordinate in the unit interval at time t, i.e., Θ(t, x) = θ ∈ [0, 1],397

where Θ(t, x) =
∫ x

0
ρ(t, x̄)dx̄ from (7), which now shows the time dependency of ρ.398

In this way, ρ(t, x) = ∂xΘ(t, x). It follows that ∂x(·) = ∂θ(·)∂xθ = ∂θ(·)ρ. Therefore,399
1
ρ∂x(·) = ∂θ(·). From (10), we have:400

dX

dt
= ∂tX + v∂xX =

1

ρ
∂x

(
∂xX

ρ

)
= ∂θ (∂θX) =

∂2X

∂θ2
.(11)401

402
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Now, we discretize (11) with the consistent finite differences dX
dt ≈

Xi(t+1)−Xi(t)
∆t and403

∂2X
∂θ2 ≈

Xi+1−2Xi+Xi−1

(∆θ)2 (that is, we have that lim∆t→0
Xi(t+1)−Xi(t)

∆t = dX
dt and that404

lim∆θ→0
Xi+1−2Xi+Xi−1

(∆θ)2 = ∂2X
∂θ2 ). Now, with the choice 3∆t = (∆θ)2, and from (10),405

we obtain for i ∈ S \ {l, r}:406

Xi(t+ 1) =
1

3
(Xi−1(t) +Xi(t) +Xi+1(t)) ,

Xl(t) = 0,

Xr(t) = β(t),

Xi(0) = X0i.

(12)407

408

Equation (12) is the discrete pseudo-localization algorithm to be implemented syn-409

chronously by the agents in the swarm, starting from any initial condition X0. The410

leftmost agent holds its value at zero while the rightmost agent implements the bound-411

ary control β. In the following section we analyze its behavior together with that of412

the dynamics on ρ.413

4.2. Distributed density control law and analysis. In this subsection, we414

propose a distributed feedback control law to achieve ρ→ ρ∗ and w → 0, as t→∞,415

through a distributed control input v and a boundary control β. We refer the reader to416

[19] for an overview of Lyapunov-based methods for stability analysis of PDE systems.417

From (3) and (10), we have the dynamics:418

∂tρ = −∂x(ρv),

∂tX =
1

ρ
∂x

(
∂xX

ρ

)
− v∂xX,

X(t, 0) = 0,

X(t, L(t)) = β(t),

X(0, x) = X0(x).

(13)419

420

This realizes the feedback interconnection of Figure 1.421

Assumption 4.4. (Well-posedness of the full PDE system). We assume422

that (13) is well posed, and that the solution ρ(t, ·) (resp. X(t, ·)) is sufficiently smooth423

and belongs to the Sobolev space H1([0, L(t)]), for all t ∈ R≥0 (resp. X belongs to424

the Sobolev space H1(M(t)) for all t ∈ R≥0).425

We also assume that the agent at position x at time t is able to measure ρ(t, x).426

However, the agents in the swarm do not have access to their positions, and therefore427

cannot access ρ∗(x), which could be used to construct a feedback law. To circumvent428

this problem, we propose a scheme in which the agents use the position identifier or429

pseudo-localization variable X to compute p∗ ◦ X(t, x), using this as their dynamic430

set-point. The idea is to then design a distributed control law and a boundary control431

law such that ρ→ p∗ ◦X and X → Θ∗, as t→∞, to obtain ρ→ p∗ ◦Θ∗ = ρ∗. Recall432

that the function p∗ is computed offline and is broadcasted to the agents prior to the433

beginning of the self-organization process, and that p∗ is assumed to be a Lipschitz434

function. Consider the distributed control law, defined as follows for all time t:435

v(t, 0) = 0,

∂xv = (ρ− p∗ ◦X)− ∂Xp
∗

ρ(ρ+ p∗ ◦X)
∂x

(
∂xX

ρ

)
,

(14)436

437
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together with the boundary control law:438

X(t, 0) = 0,

βt = k

(
2− β(t)− Xx

ρ

∣∣∣∣
L(t)

)
.

(15)439

440

We remark again that the agents implementing the control laws (14) and (15) do not441

require position information, because for the agent at position x at time t, ρ(t, x) is a442

measurement, X(t, x) is the pseudo-localization variable, through which p∗ ◦X(t, x)443

can be computed.444

Theorem 4.5. (Convergence of solutions). Under the well-posedness As-445

sumption 4.4, the solutions (ρ(t, ·), X(t, ·)) to (13), under the control laws (14) and446

(15), converge to (ρ∗,Θ∗), ρ → ρ∗ and X → Θ∗ pointwise, as t → ∞, from any447

smooth initial condition (ρ0, X0).448

Proof. Consider the candidate control Lyapunov functional V :449

V =
1

2

∫ L(t)

0

|ρ− p∗ ◦X|2dx+
1

2

∫ L(t)

0

|∂xw|2
ρ

dx+
1

2
|w(L(t))|2.450

451

Taking the time derivative of V along the dynamics (13), using Lemma 2.2 on the452

Leibniz integral rule, and applying Corollary 2.3 on the derivative of energy function-453

als, we obtain:454

V̇ =

∫ L(t)

0

(ρ− p∗ ◦X)

(
dρ

dt
− d(p∗ ◦X)

dt

)
dx+

1

2

∫ L(t)

0

|ρ− p∗ ◦X|2∂xv dx455

+

∫ L(t)

0

(∂xw)(∂t∂xw)

ρ
dx− 1

2

∫ L(t)

0

(
∂xw

ρ

)2

(∂tρ)dx+
1

2

(∂xw)2

ρ
v

∣∣∣∣
L(t)

0

456

+ w(L)
dw(L(t))

dt
.457

458

Now, dρdt = ∂tρ+ v∂xρ = −ρ∂xv (since ∂tρ = −∂x(ρv), from (13)). Also, ∂t∂x = ∂x∂t,459

which implies that
∫ L(t)

0
(∂xw)(∂t∂xw)

ρ dx =
∫ L(t)

0
(∂xw)(∂x∂tw)

ρ dx = (∂xw)(∂tw)
ρ

∣∣∣∣
L(t)

0

−460

−
∫ L(t)

0
∂x

(
∂xw
ρ

)
(∂tw)dx (using the Divergence theorem in the second integral), and461

we obtain:462

V̇ =

∫ L(t)

0

(ρ− p∗ ◦X)

[
−ρ∂xv − ∂Xp∗

1

ρ
∂x

(
∂xX

ρ

)]
dx463

+
1

2

∫ L(t)

0

|ρ− p∗ ◦X|2∂xv dx+
∂xw

ρ
∂tw

∣∣∣∣
L(t)

0

−
∫ L(t)

0

∂x

(
∂xw

ρ

)
(∂tw)dx464

+
1

2

∫ L(t)

0

(
∂xw

ρ

)2

∂x(ρv)dx+
1

2

(∂xw)2

ρ
v

∣∣∣∣
L(t)

0

+ w(L)
dw(L(t))

dt
.465

466

From (13), we have that ∂tw = 1
ρ∂x

(
∂xw
ρ

)
− v∂xw, thus:467

∫ L(t)

0

∂x

(
∂xw

ρ

)
(∂tw)dx =

∫ L(t)

0

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

dx−
∫ L(t)

0

∂x

(
∂xw

ρ

)
(∂xw)vdx.468

469
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Now, using the above equation, applying the Divergence theorem (2) (integration by470

parts) to the term 1
2

∫ L(t)

0

(
∂xw
ρ

)2

∂x(ρv)dx, and rearranging the terms, we obtain:471

V̇ =− 1

2

∫ L(t)

0

(ρ− p∗ ◦X)

[
(ρ+ p∗ ◦X)(∂xv) +

∂Xp
∗

ρ
∂x

(
∂xX

ρ

)]
dx472

−
∫ L(t)

0

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

dx+

∫ L(t)

0

∂x

(
∂xw

ρ

)
(∂xw)vdx473

−
∫ L(t)

0

(∂xw)∂x

(
∂xw

ρ

)
vdx+

∂xw

ρ
∂tw

∣∣∣∣
L(t)

0

+
(∂xw)2

ρ
v

∣∣∣∣
L(t)

0

+ w(L)
dw(L(t))

dt
.474

475

Since ∂xw
ρ ∂tw

∣∣∣∣
L(t)

0

+ (∂xw)2

ρ v

∣∣∣∣
L(t)

0

= ∂xw
ρ (∂tw + v∂xw)

∣∣∣∣
L(t)

0

= ∂xw
ρ

dw
dt

∣∣∣∣
L(t)

0

, the above476

equation reduces to:477

V̇ =− 1

2

∫ L(t)

0

(ρ− p∗ ◦X)

[
(ρ+ p∗ ◦X)(∂xv) +

∂Xp
∗

ρ
∂x

(
∂xX

ρ

)]
dx478

−
∫ L(t)

0

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

dx+

(
∂xw

ρ
+ w

)
dw

dt

∣∣∣∣
L(t)

0

.479

480

From (14) and (15), we have dw
dt

∣∣∣∣
0

= 0 and dw
dt

∣∣∣∣
L(t)

= −k
(
∂xw
ρ + w

) ∣∣∣∣
L(t)

, and we481

obtain:482

V̇ =− 1

2

∫ L(t)

0

(ρ− p∗ ◦X)

[
(ρ+ p∗ ◦X)(∂xv) +

∂Xp
∗

ρ
∂x

(
∂xX

ρ

)]
dx483

−
∫ L(t)

0

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

dx− k
∣∣∣∣
∂xw

ρ
+ w

∣∣∣∣
2

L(t)

.484

485

With ∂xv = (ρ− p∗ ◦X)− ∂Xp
∗

ρ(ρ+p∗◦X)∂x

(
∂xX
ρ

)
as in (14), we get:486

V̇ =− 1

2

∫ L(t)

0

(ρ+ p∗ ◦X)|ρ− p∗ ◦X|2dx−
∫ L(t)

0

1

ρ

∣∣∣∣∂x
(
∂xw

ρ

)∣∣∣∣
2

dx

− k
∣∣∣∣
∂xw

ρ
+ w

∣∣∣∣
2

L(t)

.

(16)487

488

Clearly, V̇ ≤ 0, and ρ(t, ·), w(t, .) ∈ H1([0, supt L(t)]), for all t. By Lemma 2.5, the489

Rellich-Kondrachov Compactness Theorem, the space H1([0, supt L(t)]) is compactly490

contained in L2([0, supt L(t)]), and by the LaSalle Invariance Principle, Lemma 2.6,491

we have that the solutions to (13) converge to the largest invariant subset of V̇ −1(0).492

This implies that:493

lim
t→∞

‖ρ(t, ·)− p∗ ◦X(t, ·)‖L2([0,L(t)]) = 0,494

lim
t→∞

‖∂x
(
∂xw

ρ

)
‖L2([0,L(t)],ρ) = 0,495

lim
t→∞

(
∂xw

ρ

∣∣∣∣
L(t)

+ w(t, L(t))

)
= 0.496

497
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Also, w(t, 0) = 0 and, from the smoothness of w, we have w(t, x) =
∫ x

0
∂xw. From498

above, we have limt→∞ ‖∂x
(
∂xw
ρ

)
‖L2([0,L(t)],ρ) = 0, and using the Poincaré-Wirtinger499

inequality, Lemma 2.4 (with the weighted measure ρdµ), we get limt→∞ ‖∂xwρ −500
∫ L(t)

0
∂xw‖L2([0,L(t)],ρ) = 0. Now

∫ L(t)

0
∂xw = w(t, L(t)) and from above we have501

limt→∞ w(t, L(t)) = limt→∞−∂xwρ
∣∣∣∣
L(t)

, which implies that:502

lim
t→∞

∥∥∥∥
∂xw

ρ
+
∂xw

ρ
(t, L(t))

∥∥∥∥
L2([0,L(t)],ρ)

= 0.503

504

It can be shown from above that limt→∞

∥∥∥∂xwρ
∥∥∥
L2([0,L(t)],ρ)

= limt→∞

∣∣∣∂xwρ (t, L(t))
∣∣∣,505

and that the Cauchy-Schwarz inequality for the (weighted) inner product of the func-506

tions ∂xw
ρ (t, ·) and ∂xw

ρ (t, L(t)) in the limit t→∞ is indeed an equality. This implies:507

lim
t→∞

∣∣∣∣
∂xw

ρ
(t, ·)

∣∣∣∣ = lim
t→∞

∣∣∣∣
∂xw

ρ
(t, L(t))

∣∣∣∣508
509

almost everywhere in [0, L(t)]. Owing to the smoothness of w, we therefore have510

limt→∞
∂xw
ρ (t, ·) = limt→∞

∂xw
ρ (t, L(t)) a.e., and we get:511

lim
t→∞

∥∥∥∥
∂xw

ρ

∥∥∥∥
L2([0,L(t)],ρ)

= lim
t→∞

‖∂xw‖L2([0,L(t)]) = 0.512

513

Using the Poincaré-Wirtinger inequality, Lemma 2.4, again, we note that this implies514

limt→∞ ‖w −
∫ L(t)

0
w‖L2([0,L(t)]) = 0. We have limt→∞ |

∫ L(t)

0
w| = |

∫ L(t)

0

∫ x
0
∂xw| ≤515

L(t)3/2‖∂xw‖L2([0,L(t)]) = 0, which implies that limt→∞
∫ L(t)

0
w = 0 and therefore516

limt→∞ ‖w‖L2([0,L(t)]) = 0. Thus, we get limt→∞ ‖w(t, ·)‖H1([0,L(t)]) = 0, or in517

other words, w →H1 0. Now, limt→∞ |w(t, x)| = limt→∞ |w(t, 0) +
∫ x

0
∂xw(t, ·)| ≤518

limt→∞ |w(t, 0)|+
∫ x

0
|∂xw(t, ·)| ≤ limt→∞ |w(t, 0)|+

√
L(t)‖w(t, ·)‖H1(M) = 0, which519

implies that w → 0 pointwise. Given that w = X − Θ, we have limt→∞X(t, ·) −520

Θ(t, ·) = 0. Let limt→∞ L(t) = L and limt→∞Θ(t, ·) = Θ̄(·), which implies that521

X → Θ̄ pointwise.522

Now, from the above we have limt→∞ ‖ρ(t, ·)−p∗◦Θ̄‖L2([0,L(t)]) = limt→∞ ‖ρ(t, ·)−523

p∗ ◦X(t, ·)+p∗ ◦X(t, ·)−p∗ ◦ Θ̄‖L2([0,L(t)]) ≤ limt→∞ ‖ρ(t, ·)−p∗ ◦X(t, ·)‖L2([0,L(t)]) +524

‖p∗ ◦ X(t, ·) − p∗ ◦ Θ̄‖L2([0,L(t)]) = 0 (this follows from the assumption that p∗ is525

Lipschitz, since ‖p∗ ◦ X − p∗ ◦ Θ̄‖L2 ≤ c‖X − Θ̄‖L2 for some Lipschitz constant c).526

Thus, we have ρ→L2 p∗ ◦ Θ̄.527

Now, we are interested in the limit density distribution ρ̄ = p∗ ◦ Θ̄, and by the528

definition of Θ̄ we have Θ̄(x) =
∫ x

0
ρ̄. We now prove that this limit (ρ̄, Θ̄) is unique, and529

that (ρ̄, Θ̄) = (ρ∗,Θ∗). From the definition of Θ̄, we get dΘ̄
dx (x) = ρ̄(x) = p∗(Θ̄(x)) > 0,530

∀Θ̄(x) ∈ [0, 1]. We therefore have:531

x =

∫ Θ̄(x)

0

(p∗(θ))
−1
dθ.532

533

Recall from the definition of p∗ and (7) that p∗ ◦ Θ∗(x) = ρ∗(x), and d
dxΘ∗(x) =534

ρ∗(x) = p∗ ◦Θ∗(x), which implies that dΘ∗

dx = p∗(θ∗) > 0, where θ∗ = Θ∗(x). There-535
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fore:536

x =

∫ Θ∗(x)

0

(p∗(θ))
−1
dθ.537

538

From the above two equations, we get:539

∫ Θ̄(x)

0

(p∗(θ))
−1
dθ =

∫ Θ∗(x)

0

(p∗(θ))
−1
dθ,540

541

for all x, and since p∗ is strictly positive, it implies that Θ̄ = Θ∗, and we obtain542

ρ̄ = p∗ ◦ Θ̄ = p∗ ◦ Θ∗ = ρ∗. And we know that ρ →L2 p∗ ◦ Θ̄ = p∗ ◦ Θ∗ = ρ∗. In543

other words, ρ converges to ρ∗ in the L2 norm. Moreover, since X → Θ∗ pointwise,544

from (14) we have limt→∞ ∂xv = limt→∞ ρ − p∗ ◦ X = limt→∞ ρ − ρ∗, therefore545

limt→∞ ‖∂xv‖L2([0,L(t)]) = 0. Now, from the smoothness of v, we have:546

lim
t→∞

|v(t, x)| ≤ lim
t→∞

|v(t, 0)|+
∫ x

0

|∂xv| ≤ lim
t→∞

|v(t, 0)|+
√
L(t)‖∂xv‖L2([0,L(t)]) = 0.547

548

Thus, limt→∞ ρ(t, x) − ρ∗(x) = limt→∞ v(t, x) = 0 pointwise, that is, ρ → ρ∗ point-549

wise. Therefore, for the PDE system (13), with control laws (14) and (15), we have550

ρ→ ρ∗ and X → Θ∗ (pointwise).551

4.2.1. Physical interpretation of the density control law. For a physical552

interpretation of the control law, we first rewrite some of the terms in a suitable form.553

From (13), we know that:554

1

ρ
∂x

(
∂xX

ρ

)
=
∂X

∂t
+ v∂xX =

dX

dt
.555

556

The second term in the expression for ∂xv in the law (14) can thus be rewritten as:557

∂Xp
∗

ρ(ρ+ p∗ ◦X)
∂x

(
∂xX

ρ

)
=

1

(ρ+ p∗ ◦X)
∂Xp

∗ dX

dt
=

1

(ρ+ p∗ ◦X)

dp∗

dt
.558

559

Now, from above and (14), we obtain:560

v(t, x) =

∫ x

0

(ρ− p∗ ◦X)−
∫ x

0

1

(ρ+ p∗ ◦X)

dp∗

dt
.(17)561

562

Equation (17) gives the velocity of the agent at x at time t. Now, to interpret it,563

we first consider the case where the pseudo-localization error is zero, that is, when564

X = Θ∗. This would imply that p∗ ◦X = p∗ ◦Θ∗ = ρ∗, dXdt = dΘ∗

dt = 0, and we obtain:565

v(t, x) =

∫ x

0

(ρ− ρ∗).(18)566
567

The term
∫ x

0
(ρ− ρ∗) =

∫ x
0
ρ−

∫ x
0
ρ∗ is the difference between the number of agents in568

the interval [0, x] and the desired number of agents in [0, x]. If the term is positive, it569

implies that there are more than the desired number of agents in [0, x] and the control570

law essentially exerts a pressure on the agent to move right thereby trying to reduce571

the concentration of agents in the interval [0, x], and, vice versa, when the term is572

negative. This eventually accomplishes the desired distribution of agents over a given573
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interval. This would be the physical interpretation of the control law for the case574

where the pseudo-localization error is zero (that is, the agents have full information575

of their positions).576

However, in the transient case when the agents do not possess full information577

of their positions and are implementing the pseudo-localization algorithm for that578

purpose, the control law requires a correction term that accounts for the fact that the579

transient pseudo coordinates X(t, x) cannot be completely relied upon. This is what580

the second term
∫ x

0
1

(ρ+p∗◦X)
dp∗

dt in (17) corrects for. When this term is positive, that581

is,
∫ x

0
1

(ρ+p∗◦X)
dp∗

dt > 0, it roughly implies that the “estimate” of the desired number582

of agents in the interval [0, x] is increasing (indicating that an increase in the concen-583

tration of agents in [0, x] is desirable), and the term essentially reduces the “rightward584

pressure” on the agent (note that this term will have a negative contribution to the585

velocity (17)).586

4.3. Discrete implementation. In this section, we present a scheme to com-587

pute p∗ (the transformed desired density profile) and a consistent discretization scheme588

for the distributed control law. We follow that up with a discussion on the convergence589

of the discretized system and a pseudo-code for the implementation.590

4.3.1. On the computation of p∗. In this subsection, we provide a means of591

computing p∗ from a given ρ∗ via interpolation. Let the desired domain M∗ = [0, L∗]592

be discretized uniformly to obtain M∗d = {0 = x1, . . . , xm = L∗} such that xj−xj−1 =593

h (constant step-size). Note that m is the number of interpolation points, not equal594

to the number of agents. The desired density ρ∗ : [0, L∗] → R>0 is known, and we595

compute the value of ρ∗ on M∗d to get ρ∗(x1, . . . , xm) = (ρ∗1, . . . , ρ
∗
m). We also have596

Θ∗(x) =
∫ x

0
ρ∗dµ, for all x ∈ [0, L∗]. Now, computing the integral with respect to the597

Dirac measure for the set M∗d , we obtain Θ∗d(x1, . . . , xm) = (θ∗1 , . . . , θ
∗
m), where θ∗1 = 0598

and θ∗k = 1
2

∑k
j=1(ρ∗j−1+ρ∗j )h, for k = 2, . . . ,m (note that 0 = θ∗1 ≤ θ∗2 ≤ . . . ≤ θ∗m ≤ 1599

and limh→0 θ
∗
m = Θ∗(L∗) = 1). Now, the value of the function p∗ at any X ∈ [0, 1] can600

be now obtained from the relation p∗(θ∗k) = ρ∗k, for k = 1, . . . ,m, by an appropriate601

interpolation.602

(ρ∗1, . . . , ρ
∗
m) = p∗(θ∗1 , . . . , θ

∗
m)

(x1, . . . , xm) (θ∗1 , . . . , θ
∗
m)

ρ∗

Θ∗

p∗

4.3.2. Discrete control law. A discretized pseudo-localization algorithm is603

given by (12). We now discretize (14) to obtain an implementable control law for a604

finite number of agents i ∈ S, and a numerical simulation of this law is later presented605

in Section 6.606

Let i ∈ S \ {l, r}. First note that ∂xv = (∂θv)

∣∣∣∣
θ=Θ(x)

(∂xΘ) = (∂θv)

∣∣∣∣
θ=Θ(x)

ρ607

(where v ≡ v(Θ(x))). Using a consistent backward differencing approximation, and608

recalling that ∆θ = ε, we can write:609

(∂xv)i ≈ ρi
vi − vi−1

∆θ
= ρi

vi − vi−1

ε
, i ∈ S610

611

where ρi is agent i’s density measurement.612
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From Section 4.1, recall the consistent finite-difference approximation:613

1

ρ
∂x

(
∂xX

ρ

)

i

≈ 1

ε2
(Xi−1 − 2Xi +Xi+1).614

615

With κ = 1
2ε , from (14) and the above equation, we obtain the law for agent i as:616

vi = vi−1 +
ρi − p∗(Xi)

2κρi
− 2κ

ρi(ρi + p∗(Xi))

(
p∗(Xi+1)− p∗(Xi−1)

Xi+1 −Xi−1

)

× (Xi−1 − 2Xi +Xi+1)

(19)617

618

with vl = 0. The computation in v can be implemented by propagating from the619

leftmost agent to the rightmost agent along a line graph Gline (with message receipt620

acknowledgment). Note that this propagation can alternatively be formulated by621

each agent averaging appropriate variables with left and right neighbors, which will622

result in a process similar to a finite-time consensus algorithm. Now, the boundary623

control (15) is discretized (with ∂tβ ≈ β(t+1)−β(t)
∆t ), with the choice k = 1

ε to:624

β(t+ 1) = β(t) + k∆t(2− β(t)− 2κ (β(t)−Xr−1(t)))

=
4− 2ε

3
β(t) +

1

3
Xr−1(t)

(20)625

626

4.3.3. On the convergence of the discrete system. The discretized pseudo-627

localization algorithm (12) with the boundary control law (15), can be rewritten as:628

X(t+ 1) = X(t)− 1

3
LX(t) + u(t),(21)629

630

where X(t) = (Xl(t), . . . , Xr(t)), L is the Laplacian of the line graph Gline and the631

input u(t) =
(
0, . . . , 0, ε3 (2− β(t))

)
. This discretized system is stable and we thereby632

have that the discretized pseudo-localization algorithm is consistent and stable. Thus,633

by the Lax Equivalence Theorem [25], the solution of (21) converges to the solution634

of (10) with the boundary control (15) as N → ∞. Due to the nonlinear nature of635

the discrete implementation of the equation in ρ, we are only certain that we have a636

consistent discrete implementation in this case (no similar convergence theorem exists637

for discrete approximations of nonlinear PDEs.)638
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Algorithm 1 Self-organization algorithm for 1D environments

1: Input: ρ∗, K (number of iterations), ∆t (time step)
2: Requires:
3: Offline computation of p∗ as outlined in Section 4.3.1
4: Initialization Xi(0) = X0i, vi = 0
5: Leftmost and rightmost agents, l, r, resp., are aware they are at boundary
6: for k := 1 to K do
7: if i = l then
8: agent l holds onto Xl(k) = 0 and vl(k) = 0
9: else if agent i ∈ {l + 1, . . . , r − 1} then

10: agent i receives Xi−1(k) and Xi+1(k) from its left and right neighbors
11: agent i implements the update (12)
12: else if i = r then
13: agent r receives Xr−1(k) from its left neighbor
14: agent r implements the update (20)

15: for i := l to r do
16: agent i computes velocity vi from (19)

17: agent i moves to xi(k + 1) = xi(k) + vi(k)∆t

5. Self-organization in two dimensions. In this section, we present the two-639

dimensional self-organization problem. Although our approach to the 2D problem is640

fundamentally similar to the 1D case, we encounter a problem in the two-dimensional641

case that did not require consideration in one dimension, and it is the need to control642

the shape of the spatial domain in which the agents are distributed. We overcome643

this problem by controlling the shape of the domain with the agents on the boundary,644

while controlling the density distribution of the agents in the interior.645

Let M : R ⇒ R2 be a smooth one-parameter family of bounded open subsets646

of R2, such that M̄(t) is the spatial domain in which the agents are distributed at647

time t ≥ 0. Let ρ : R× R2 → R≥0 be the spatial density function with support M̄(t)648

for all t ≥ 0; that is, ρ(t, x) > 0, ∀x ∈ M̄(t), and t ≥ 0. Without loss of generality,649

we shift the origin to a point on the boundary of the family of domains, such that650

(0, 0) ∈ ∂M(t), for all t. Let ρ∗ : M∗ → R>0 be the desired density distribution,651

where M∗ is the target spatial domain. From here on, we view M̄ as a one-parameter652

family of compact 2-submanifolds with boundary of R2. Just as in the 1D case, the653

agents do no have access to their positions but know the true x- and y-directions.654

In what follows we present our strategy to solve this problem, which we divide655

into three stages for simplicity of presentation and analysis. In the first stage, the656

agents converge to the target spatial domain M∗ with the boundary agents controlling657

the shape of the domain. In stage two, the agents implement the pseudo-localization658

algorithm to compute the coordinate transformation. In the third stage, the boundary659

agents remain stationary and the agents in the interior converge to the desired density660

distribution. This simplification is performed under the assumption that, once the661

agents have localized themselves at a given time, they can accurately update this in-662

formation by integrating their (noiseless) velocity inputs. Noisy measurements would663

require that these phases are rerun with some frequency; e.g. using fast and slow time664

scales as described in Section 3.665

5.1. Pseudo-localization algorithm for boundary agents. To begin with,666

we propose a pseudo-localization algorithm for the boundary agents which allows for667
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their control in the first stage. To do this, we assume that the agents have a boundary668

detection capability (can approximate the normal to the boundary), the ability to669

communicate with neighbors immediately on either side along the boundary curve,670

and can measure the density of boundary agents.671

Let M0 ⊂ R2 be a compact 2-manifold with boundary ∂M0 and let (0, 0) ∈ ∂M0.672

To localize themselves, the agents on ∂M0 implement the distributed 1D pseudo-673

localization algorithm presented in Section 4.1. This yields a parametrization of the674

boundary Γ : ∂M0 → [0, 1), with Γ(0, 0) = 0, such that the closed curve which is675

the boundary ∂M0 is identified with the interval [0, 1). We have that, for γ ∈ [0, 1),676

Γ−1(γ) ∈ ∂M0. For γ ∈ [0, 1), let s(γ) be the arc length of the curve ∂M0 from677

the origin, such that s(0) = 0 and limγ→1 s(γ) = l. We assume that the boundary678

agents have access to the unit outward normal n(γ) to the boundary, and thus the679

unit tangent s(γ).680

Let q : [0, l)→ R>0 denote the normalized density of agents on the boundary, such681

that we have
∫ l

0
q(s)ds = 1. Now the 1D pseudo-localization algorithm of Section 4.1682

serves to provide a 2D boundary pseudo-localization as follows. Note that ds
dγ = 1

q(γ) ,683

and (dx, dy) = sds, which implies (dx, dy) = 1
q(γ)s(γ)dγ. Therefore, we get the684

position of the boundary agent at γ, (x(γ), y(γ)), as (x(γ), y(γ)) =
∫ γ

0
1

q(γ̄)s(γ̄)dγ̄,685

and the arc-length s(γ) =
∫ γ

0
1

q(γ̄)dγ̄, which is discretized by a consistent scheme to686

obtain:687

(xi, yi) =
1

2
∆γ

i−1∑

k=0

(
sk
qk

+
sk+1

qk+1

)
, for i ∈ ∂M0,(22)688

689

and we recall that the agents have access to q and s. The computation of (xi, yi)690

can be implemented by propagating from the agent with γi = 0 along the boundary691

agents in the direction as γi → 1, along a line graph Gline (with message receipt692

acknowledgment). Note that this propagation can alternatively be formulated by693

each agent averaging appropriate variables with left and right neighbors, which will694

result in a process similar to a finite-time consensus algorithm.695

This way, the boundary agents are localized at time t = 0, and they update their696

position estimates using their velocities, for t ≥ 0.697

5.2. Pseudo-localization algorithm in two dimensions. In this subsection,698

we present the pseudo-localization algorithm for the agents in the interior of the spatial699

domain. We first describe the idea of the coordinate transformation (diffeomorphism)700

we employ and construct a PDE that converges asymptotically to this diffeomorphism.701

We then discretize the PDE to obtain the distributed pseudo-localization algorithm.702

The main idea is to employ harmonic maps to construct a coordinate trans-703

formation or diffeomorphism from the spatial domain of the swarm onto the unit704

disk. We begin the construction with the static case, where the agents are station-705

ary. Let M ⊆ R2 be a compact, static 2-manifold with boundary and N = {(x, y) ∈706

R2 | (x− 1)2 + y2 ≤ 1} be the unit disk. The manifolds M and N are both equipped707

with a Euclidean metric g = h = δ.708

First, we define a mapping for the boundary of M . Let Γ : ∂M → [0, 1) be a709

parametrization of the boundary of M , as outlined in Section 5.1. Let ξ : M̄ → N be710

any diffeomorphism that takes the following form on the boundary of M :711

ξ(Γ−1(γ)) = (1− cos(2πγ), sin(2πγ)), γ ∈ [0, 1),(23)712713
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and we know that Γ−1[0, 1) = ∂M .714

Now, from Lemma 2.7, on harmonic diffeomorphisms, there is a unique harmonic715

diffeomorphism, Ψ : M → N , such that Ψ = ξ on ∂M . We know that, by definition,716

the mapping Ψ = (ψ1, ψ2) satisfies:717

{
∆ψ1 = 0,

∆ψ2 = 0,
for r ∈ M̊,

Ψ = ξ, on ∂M,

(24)718

719

where ∆ is the Laplace operator. Let Ψ∗ be the corresponding map from the target720

domain M∗ to the unit disk N . Now, we define a function p∗ : N → R>0 by p∗ =721

ρ∗ ◦ (Ψ∗)−1, the image of the desired spatial density distribution on the unit disk,722

which is computed offline and is broadcasted to the agents prior to the beginning of723

the self-organization process. We later use p∗ to derive the distributed control law724

which the agents implement.725

ρ∗(r) = p∗(Ψ∗(r))

r ∈M∗ Ψ∗(r) ∈ N

ρ∗

Ψ∗

p∗

We now construct a PDE that asymptotically converges to the harmonic diffeo-726

morphism, which we then discretize to obtain a distributed pseudo-localization algo-727

rithm. We use the heat flow equation as the basis to define the pseudo-localization728

algorithm, which yields a harmonic map as its asymptotically stable steady-state so-729

lution. We begin by setting up the system for a stationary swarm, for which the730

spatial domain is fixed.731

Let M ⊂ R2 be a compact 2-manifold with boundary, N be the unit disk of R2,732

and R = (X,Y ) : M → N . The heat flow equation is given by:733

{
∂tX = ∆X,

∂tY = ∆Y,
for r ∈ M̊,

R = ξ, on ∂M.

(25)734

735

The heat flow equation has been studied extensively in the literature. For well-known736

existence and uniqueness results, we refer the reader to [11].737

Lemma 5.1. (Pointwise convergence of the heat flow equation to a har-738

monic diffeomorphism). The solutions of the heat flow equation (25) converge739

pointwise to the harmonic map satisfying (24), exponentially as t → ∞, from any740

smooth initial R0 ∈ H1(M)×H1(M).741

Proof. Let Ψ be the solution to (24), which is a harmonic map by definition. Let742

R̃ = R−Ψ be the error where R = (X,Y ) is the solution to (25). Subtracting (24)743

from (25), we obtain:744

{
∂tX = ∆X,

∂tY = ∆Y,
for r ∈ M̊,

R̃ = 0, on ∂M.

(26)745

746
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The Laplace operator ∆ with the Dirichlet boundary condition in (26) is self-adjoint747

and has an infinite sequence of eigenvalues 0 < λ1 < λ2 < . . ., with the corresponding748

eigenfunctions {φi}∞i=1 forming an orthonormal basis of L2(M) (where φi ∈ L2(M)749

and ∆φi = λiφi for all i, with φi = 0 on the boundary) [12]. Let the initial con-750

dition be X̃0 =
∑∞
i=1 aiφi and Ỹ0 =

∑∞
i=1 biφi (where ai and bi are constants751

for all i). The solution to (26) is then given by X̃(t, r) =
∑∞
i=1 aie

−λitφi(r) and752

Ỹ (t, r) =
∑∞
i=1 bie

−λitφi(r). Since λi > 0, for all i, we obtain limt→∞ X̃(t, r) = 0 and753

limt→∞ Ỹ (t, r) = 0, for all r ∈ M̄ . Therefore, limt→∞R(t, r) = Ψ(r), for all r ∈ M̄ ,754

and the convergence is exponential.755

We now have a PDE that converges to the diffeomorphism given by (24) for the756

stationary case (agents in the swarm are at rest). For the dynamic case, and to757

describe the algorithm while the agents are in motion, we modify (25) as follows. Let758

R = (X,Y ) : R×R2 → R. We are only interested in the restriction to M(t), R|M(t),759

at any time t, so we drop the restriction and just identify R ≡ R|M(t)
. Using the760

relation dX
dt = ∂tX +∇X · v, where v is a velocity field, we obtain:761

{
∂tX = ∆X −∇X · v,
∂tY = ∆Y −∇Y · v, for r ∈ M̊(t),

R = ξ, on ∂M(t).

(27)762

763

We now discretize (27) to derive the distributed pseudo-localization algorithm. Now,764

we have ρ : R× R2 → R≥0 with support M(t), the density distribution of the swarm765

on the domain M(t). We view the swarm as a discrete approximation of the domain766

M(t) with density ρ, and the PDE (27) as approximated by a distributed algorithm767

implemented by the swarm.768

Here, we propose a candidate distributed algorithm, which would yield the heat769

flow equation via a functional approximation. Our candidate algorithm is a time-770

varying weighted Laplacian-based distributed algorithm, owing to the connection be-771

tween the graph Laplacian and the manifold Laplacian [4]:772

Xi(t+ 1) = Xi(t) +
∑

j∈Ni(t)

wij(t)(Xj(t)−Xi(t)),(28)773

774

and a similar equation for Y . We show how to derive next the values for the weights775

wij(t) ∈ R, for all t. First, the set of neighbors, j ∈ Ni(t), of i at time t, are the spatial776

neighbors of i in M(t), that is, Ni(t) = {j ∈ S | ‖rj(t)−ri(t)‖ ≤ ε} ≡ Bε(ri(t)). Using777

Xi(t+ 1)−Xi(t) = dX
dt δt, for a small δt, we make use of a functional approximation778

of (28):779

dX

dt
δt =

∫

Bε(ri(t))

w(t, ri, s)(X(t, s)−X(t, ri)) ρ(t, s)dµ,(29)780

781

where dν = ρ dµ is a density-dependent measure on the manifold, and the weighting782

function w satisfies w(t, ri(t), rj(t)) = wij(t), for all i, j ∈ S. We note that the783

summation term in (28) is a special form of the integral in (29) with a Dirac measure784

dν supported on the set {r1(t), . . . , rN (t)} at time t. Now, with the choice w(t, ri, s) =785
1∫

Bε(s(t))
ρ(t,̄s)dµ

and for very small ε (making O(ε3) terms negligible), (29) reduces to:786

dX

dt
δt = a∆X,787

788
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where a = 1
4ε

∫
Bε(ri(t))

(s − ri(t)) · (s − ri(t))dµ is a constant. Now, with the choice789

δt = a, we obtain:790

dX

dt
=
∂X

∂t
+ v · ∇X = ∆X,791

792

which is the PDE (27). Let d(t, ri(t)) =
∫
Bε(ri(t))

ρ(t, s)dµ and di(t) = |Ni(t)|, for793

i ∈ S. Substituting wij(t) = w(t, ri(t), rj(t)) = 1∫
Bε(rj(t))

ρ(t,̄s)dµ
= 1

d(t,rj(t))
≈ 1

dj(t)
,794

in (28), we get the distributed pseudo-localization algorithm for the agents in the795

interior of the swarm to be:796

Xi(t+ 1) = Xi(t) +
∑

j∈Ni(t)

1

dj(t)
(Xj(t)−Xi(t)),

Yi(t+ 1) = Yi(t) +
∑

j∈Ni(t)

1

dj(t)
(Yj(t)− Yi(t)).

(30)797

798

For the agents on the boundary ∂M(t), we have:799

Ri = (Xi, Yi) = ξi,800801

where ξi = ξ(ri(t)), for ri(t) ∈ ∂M(t). Note that the discretization scheme is consis-802

tent, in that as the number of agents N →∞, the discrete equation (30) converges to803

the PDE (27). In this way, from (30), the pseudo-localization algorithm is a Laplacian-804

based distributed algorithm, with a time-varying weighted graph Laplacian.805

5.3. Distributed density control law and analysis. In this section, we de-806

rive the distributed feedback control law to converge to the desired density distribution807

over the target domain in the two-dimensional case. The swarm dynamics are given808

by:809

∂tρ = −∇ · (ρv), for r ∈ M̊(t),

∂tr = v, on ∂M(t).
(31)810

811

812

Assumption 5.2. (Well-posedness of the PDE system). We assume that (31)813

is well-posed, and that its solution ρ(t, ·) is sufficiently smooth and belongs to the814

Sobolev space H1(M(t)), for all t ∈ R≥0.815

In what follows, we describe the control strategy based on three different stages.816

5.3.1. Stage 1. In this stage, the objective is for the swarm to converge to the817

target spatial domain M∗.818

Let r∗ : [0, 1] → ∂M∗ be the closed curve describing the desired boundary. Let819

e(γ) = r(γ) − r∗(γ) be the position error of agent γ on the boundary, where r(γ)820

is the actual position of agent γ computed as presented in Section 5.1. We define a821

distributed control law for swarm motion as follows:822

{
v = −∇ρρ , for r ∈ M̊(t),

∂tv = −e− v, on ∂M(t).
(32)823

824

825
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Theorem 5.3. (Convergence to the desired spatial domain). Under the826

well-posedness Assumption 5.2, the domain M(t) of the system (31), with the dis-827

tributed control law (32) converges to the target spatial domain M∗ as t → ∞, from828

any initial domain M0 with smooth boundary.829

Proof. We consider an energy functional E given by:830

E =
1

2

∫

∂M(t)

|e|2 +
1

2

∫

∂M(t)

|v|2.831

832

Its time derivative, Ė, using (32), is given by:833

Ė =

∫

∂M(t)

e · v +

∫

∂M(t)

v · ∂tv =

∫

∂M(t)

(e + v) · ∂tv = −
∫

∂M(t)

|v|2.834

835

Clearly, Ė ≤ 0, and |v(t, ·)| ∈ H1(∪tM(t)), for all t. By Lemma 2.5, the Rellich-836

Kondrachov Compactness theorem, H1(∪tM(t)) is compactly contained in the space837

L2(∪tM(t)) and by the LaSalle Invariance Principle, Lemma 2.6, we have that the838

solutions to (31) with the control law (32) converge to the largest invariant subset839

of Ė−1(0), which satisfies:840

lim
t→∞

‖|v|‖L2(∂M(t)) = 0,841

lim
t→∞

∂t‖|v|‖L2(∂M(t)) = lim
t→∞

∫

∂M(t)

v · ∂tv = 0.842

843

The set Ė−1(0) is characterized by the first equality above and the second equality844

is further satisfied by the invariant subset of Ė−1(0). We know from (32) that ∂tv =845

−e−v on ∂M(t), which upon multiplying on both sides by v, integrating over ∂M(t)846

and applying the previous equality on the integral of v·∂tv, yields limt→∞
∫
∂M(t)

e·v =847

0. Now, we have |∂tv|2 = |e|2 + |v|2 + 2e · v, which on integrating over ∂M(t) yields848

limt→∞ ‖|∂tv|‖L2(∂M(t)) = limt→∞ ‖|e|‖L2(∂M(t)). By multiplying ∂tv = −e − v on849

both sides by ∂tv, integrating over ∂M(t), and using the Cauchy-Schwarz inequality,850

we obtain:851

lim
t→∞

‖|∂tv|‖2L2(∂M(t)) = lim
t→∞

−
∫

∂M(t)

e · ∂tv ≤ lim
t→∞

∫

∂M(t)

|e||∂tv|852

≤ lim
t→∞

‖|e|‖L2(∂M(t))‖|∂tv|‖L2(∂M(t)) = lim
t→∞

‖|∂tv|‖2L2(∂M(t))853
854

In this way, the Cauchy-Schwarz inequality becomes an equality, which implies that855

limt→∞
∫
∂M(t)

[|e||∂tv| − (−e) · ∂tv] = 0 (since the integrand is non-negative and its856

integral is zero, it is zero almost everywhere), thus limt→∞ ∂tv = − limt→∞ e almost857

everywhere (a.e.) on the boundary, and, in turn, implies that limt→∞ v = 0 a.e. on858

the boundary (since ∂tv = −e − v and limt→∞ ∂tv = − limt→∞ e). From here, and859

owing to the Invariance Principle, we have limt→∞ ∂tv = 0 = limt→∞ e a.e. on the860

boundary. Thus, we have that limt→∞M(t) = M∗.861

5.3.2. Stage 2. Here, the agents in the swarm implement the pseudo-localization862

algorithm presented in Section 5.2. Since the agents are distributed across the target863

spatial domain M∗, implementing the pseudo-localization algorithm yields the coordi-864

nate transformation Ψ∗ characteristic of the domain M∗. We therefore have ∂tΨ
∗ = 0,865

which implies that dΨ∗

dt = ∂tΨ
∗ +∇(Ψ∗)v = ∇(Ψ∗)v, which will be used in Stage 3.866
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5.3.3. Stage 3. In this stage, the boundary agents of the swarm remain station-867

ary and interior agents converge to the desired density distribution.868

Consider the distributed control law, defined as follows for all time t:869
{
dv
dt = −ρ∇(ρ− p∗ ◦Ψ∗) + (v · ∇)v − v, for r ∈ M̊∗,
v = 0, on ∂M∗,

(33)870

871

where dv
dt at r ∈M is the acceleration of the agent at r, the control input. Using the872

relation d
dt = ∂t + v · ∇, it follows from (33) that ∂tv = −ρ∇(ρ− p∗ ◦Ψ∗)− v.873

Theorem 5.4. (Convergence to the desired density). The solutions ρ(t, ·)874

to (31) for the fixed domain M∗, under the distributed control law (33) and the well-875

posedness Assumption 5.2, converge to the desired density distribution ρ∗ a.e. as t→876

∞, from any smooth initial condition ρ0.877

Proof. We consider an energy functional E given by:878

E =
1

2

∫

M∗
|ρ− p∗ ◦Ψ∗|2 +

1

2

∫

M∗
|v|2.879

880

Using Corollary 2.3, to compute the derivative of energy functionals, we obtain Ė881

(letting ∇̄ = (∂X , ∂Y )) as follows:882

Ė =

∫

M∗
(ρ− p∗ ◦Ψ∗)

(
dρ

dt
− d(p∗ ◦Ψ∗)

dt

)
+

1

2

∫

M∗
|ρ− p∗ ◦Ψ∗|2∇ · v

+

∫

M∗
v · ∂tv

= −
∫

M∗
(ρ− p∗ ◦Ψ∗)

(
ρ∇ · v + ∇̄p∗ · dΨ∗

dt

)
+

1

2

∫

M∗
|ρ− p∗ ◦Ψ∗|2∇ · v

+

∫

M∗
v · ∂tv

= −1

2

∫

M∗
(ρ2 − (p∗ ◦Ψ∗)2)∇ · v −

∫

M∗
(ρ− p∗ ◦Ψ∗)∇̄p∗ · dΨ∗

dt
+

∫

M∗
v · ∂tv,

883

884

where, to obtain the third equality, we expand the square |ρ− p∗ ◦Ψ∗|2 in the second885

integral of the second equality. Since v = 0 on ∂M∗ and from Section 5.3.2, we have886
dΨ∗

dt = ∇(Ψ∗)v, we obtain:887

Ė =
1

2

∫

M∗
∇(ρ2 − (p∗ ◦Ψ∗)2) · v −

∫

M∗
(ρ− p∗ ◦Ψ∗)∇̄p∗ · (∇Ψ∗v) +

∫

M∗
v · ∂tv.888

889

We have ∇̄p∗∇Ψ∗ = ∇(p∗ ◦ Ψ∗), and ∇(ρ2 − (p∗ ◦ Ψ∗)2) = (ρ − p∗ ◦ Ψ∗)∇(ρ + p∗ ◦890

Ψ∗) + (ρ+ p∗ ◦Ψ∗)∇(ρ− p∗ ◦Ψ∗). Thus, we get:891

Ė =
1

2

∫

M∗
(ρ+ p∗ ◦Ψ∗)∇(ρ− p∗ ◦Ψ∗) · v +

1

2

∫

M∗
(ρ− p∗ ◦Ψ∗)∇(ρ+ p∗ ◦Ψ∗) · v

−
∫

M∗
(ρ− p∗ ◦Ψ∗)∇(p∗ ◦Ψ∗) · v +

∫

M∗
v · ∂tv.

892

893

We now have:894

Ė =
1

2

∫

M∗
(ρ+ p∗ ◦Ψ∗)∇(ρ− p∗ ◦Ψ∗) · v

+
1

2

∫

M∗
(ρ− p∗ ◦Ψ∗)∇(ρ− p∗ ◦Ψ∗) · v +

∫

M∗
v · ∂tv.

895

896
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We therefore get:897

Ė =

∫

M∗
ρ∇(ρ− p∗ ◦Ψ∗) · v +

∫

M∗
v · ∂tv =

∫

M∗
v · (ρ∇(ρ− p∗ ◦Ψ∗) + ∂tv) .898

899

From (33), we have ∂tv = −ρ∇(ρ− p∗ ◦Ψ∗)− v, and we obtain:900

Ė = −
∫

M∗
|v|2.901

902

Clearly, Ė ≤ 0, and ρ(t, .) ∈ H1(M∗) for all t. By Lemma 2.5, the Rellich-Kondrachov903

Compactness theorem, H1(M∗) is compactly contained in L2(M∗), and by the Invari-904

ance Principle, Lemma 2.6, we have that the solution to (31) converges to the largest905

invariant subset of Ė−1(0), which satisfies:906

‖|v|‖L2(M∗) = 0,

1

2
∂t‖|v|‖2L2(M∗) =

∫

M∗
v · ∂tv = 0.

(34)907

908

The set Ė−1(0) is characterized by the first equality above and the second equality is909

further satisfied by the invariant subset of Ė−1(0). We know from (33) that910

∂tv = −ρ∇(ρ− p∗ ◦Ψ∗)− v,(35)911912

which substituted in (34) yields
∫
M∗ ρv · ∇(ρ − p∗ ◦ Ψ∗) = 0. Now, from (35), we913

obtain ‖|∂tv|‖2L2(M∗) =
∫
M∗ |ρ∇(ρ−p∗ ◦Ψ∗)|2 +

∫
M∗ |v|2 +2

∫
M∗ ρv ·∇(ρ−p∗ ◦Ψ∗) =914 ∫

M∗ |ρ∇(ρ − p∗ ◦ Ψ∗)|2; that is, ‖|∂tv|‖L2(M∗) = ‖|ρ∇(ρ − p∗ ◦ Ψ∗)|‖L2(M∗). By915

multiplying (35) by ∂tv on both sides and applying the Cauchy-Schwarz inequality,916

we can also get that ‖|∂tv|‖2L2(M∗) = −
∫
M∗ ρ∂tv · ∇(ρ− p∗ ◦Ψ∗) ≤

∫
M∗ |∂tv||ρ∇(ρ−917

p∗◦Ψ∗)| ≤ ‖|∂tv|‖L2(M∗)||ρ∇(ρ−p∗◦Ψ∗)|‖L2(M∗) = ‖|∂tv|‖2L2(M∗). Thus, the Cauchy-918

Schwarz inequality is in fact an equality, which implies that ∂tv = −ρ∇(ρ− p∗ ◦Ψ∗)919

almost everywhere in M∗, which, from (35) implies in turn that v = 0 a.e. in M∗. It920

thus follows that ∂tv = 0 and ∇(ρ− p∗ ◦Ψ∗) = 0 a.e in M∗, and therefore ρ− p∗ ◦Ψ∗921

is constant a.e. in M∗. Using the Poincare-Wirtinger inequality, Lemma 2.4, we922

obtain that ‖(ρ − p∗ ◦ Ψ∗) − (ρ − p∗ ◦ Ψ∗)M∗‖ ≤ C‖∇(ρ − p∗ ◦ Ψ∗)‖ = 0, where923

(ρ− p∗ ◦Ψ∗)M∗ = 1
|M∗|

∫
M∗(ρ− p∗ ◦Ψ∗). Since

∫
M∗ ρ =

∫
N
p∗ =

∫
M∗ p

∗ ◦Ψ∗ = 1, we924

have that (ρ−p∗ ◦Ψ∗)M∗ = 0, and therefore ‖ρ−p∗ ◦Ψ∗‖L2(M∗) = 0. Now, combined925

with the fact that ρ − p∗ ◦ Ψ∗ is constant a.e. in M∗, we obtain that ρ = p∗ ◦ Ψ∗926

a.e. in M∗. We know that p∗ ◦Ψ∗ = ρ∗ and therefore, ρ = p∗ ◦Ψ∗ = ρ∗, which is the927

desired density distribution. Thus, limt→∞ ρ = ρ∗ a.e. in M∗.928

5.3.4. Robustness of the distributed control law. The self-organization929

algorithm in 2D has been divided into three stages, where asymptotic convergence is930

achieved in each stage (with exponential convergence in the second stage). We now931

present a robustness result for convergence in Stage 3 under incomplete convergence932

in the preceding stages.933

Lemma 5.5. (Robustness of the control law). For every δ > 0, there ex-934

ist T1, T2 <∞ such that when Stages 1 and 2 are terminated at t1 > T1 and t2 > T2935

respectively, we have that limt→∞ ‖ρ(t, ·)− ρ∗‖L2(M(t1)) < δ.936

Proof. In Stage 1, it follows from Theorem 5.3 on the convergence to the desired937

spatial domain that limt→∞M(t) = M∗. Then for every ε1 > 0, we have T1 <∞, such938

25

This manuscript is for review purposes only.



that dH(M(t),M∗) < ε1 for all t > T1, where dH is the Hausdorff distance between939

two sets; see (1). (Note that any appropriate notion of distance can alternatively be940

used here.) Let Stage 1 be terminated at t1 > T1, which implies that the swarm is941

distributed across the domain M(t1). In Stage 2, it follows from Lemma 5.1 on the942

convergence of the heat flow equation to the harmonic map, that for a domain M(t1),943

we have that limt→∞R(t, ·) = ΨM(t1) pointwise, where ΨM(t1) is the harmonic map944

from M(t1) to N (the unit disk). Then, for every ε2 > 0, we have a T2 < ∞, such945

that ‖R(t, ·) − ΨM(t1)‖∞ < ε2 for all t > T2. Let Stage 2 be terminated at t2 > T2,946

which implies that the map from the spatial domain to the disk is R(t2, ·). In Stage 3,947

it follows from the arguments in the proof of Theorem 5.4 (on the convergence to the948

desired density distribution) that limt→∞ ρ(t, ·) = p∗ ◦ R(t2, ·) a.e. in M(t1) if the949

map at the end of Stage 2 is R(t2, ·). We characterize the error as limt→∞ ‖ρ −950

ρ∗‖L2(M(t1)) = ‖p∗ ◦R(t2, ·) − p∗ ◦ Ψ∗‖L2(M(t1)) = ‖p∗ ◦R(t2, ·) − p∗ ◦ ΨM(t1) + p∗ ◦951

ΨM(t1)−p∗ ◦Ψ∗‖L2(M(t1)) ≤ ‖p∗ ◦R(t2, ·)−p∗ ◦ΨM(t1)‖L2(M(t1)) +‖p∗ ◦ΨM(t1)−p∗ ◦952

Ψ∗‖L2(M(t1)). Recall that ‖R(t2, ·)−ΨM(t1)‖∞ < ε2, and since p∗ is Lipschitz, we can953

get the bound ‖p∗ ◦R(t2)− p∗ ◦ΨM(t1)‖L2(M(t1)) < δ1 = cε2 (where c is the Lipschitz954

constant times the area of M(t1)). The harmonic map also depends continuously on955

its domain [15], which yields the bound ‖ΨM(t1)−Ψ∗‖∞ < ε3, since dH(M(t1),M∗) <956

ε1. Thus, we get another bound ‖p∗ ◦ ΨM(t1) − p∗ ◦ Ψ∗‖L2(M(t1)) < δ2 = cε3, and957

that ‖ρ − ρ∗‖L2(M(t1)) < δ1 + δ2 = δ. Therefore, going backwards, for all δ > 0, we958

can find T1 and T2 such that the density error is bounded by δ, when the Stages 1959

and 2 are terminated at t1 > T1 and t2 > T2 respectively.960

5.4. Discrete implementation. In this section, we present consistent schemes961

for discrete implementation of the distributed control laws (32) and (35), where the962

key aspect is the computation of spatial gradients (of ρ in Stage 1, and of ρ, Ψ∗ and963

the components of velocity v in Stage 3). The network graph underlying the swarm is964

a random geometric graph, where the nodes are distributed according to the density965

distribution over the spatial domain. According to this, every agent communicates966

with other agents within a disk of given radius (say r) determined by the hardware967

capabilities, which reduces to the graph having an edge between two nodes if and968

only if the nodes are separated by a distance less than r. We recall the earlier stated969

assumption that the agents know the true x- and y-directions.970

5.4.1. On the computation of p∗. We first begin with an approach to compute971

offline the map p∗ via interpolation. Let the desired domain M∗ ∈ R2 be discretized972

into a uniform grid to obtain M∗d = {r1, . . . , rm} (the centers of finite elements, where973

rk = (xk, yk)). The desired density ρ∗ : M∗ → R>0 is known, and we compute the974

value of ρ∗ on M∗d to get ρ∗(r1, . . . , rm) = (ρ∗1, . . . , ρ
∗
m). We also have Ψ∗(x, y) =975

(X∗, Y ∗) ∈ N , for all (x, y) ∈ M∗. Now, computing the integral with respect to the976

Dirac measure for the set M∗d , we obtain Ψ∗(r1, . . . , rm) = (Ψ∗1, . . . ,Ψ
∗
m). The value of977

the function p∗ at any (X,Y ) ∈ N can be obtained from the relation p∗(Ψ∗1, . . . ,Ψ
∗
m) =978

ρ∗(r1, . . . , rm) for k = 1, . . . ,m by an appropriate interpolation.979

(ρ∗1, . . . , ρ
∗
m) = p∗(Ψ∗1, . . . ,Ψ

∗
m)

(r1, . . . , rm) (Ψ∗1, . . . ,Ψ
∗
m)

ρ∗

Ψ∗

p∗
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5.4.2. Discrete control law. As stated earlier, for the discrete implementation980

of the distributed control laws (32) and (35), the key aspect is the computation of981

spatial gradients (of ρ in Stage 1, and of ρ, Ψ∗ and the components of velocity v in982

Stage 3). In the subsequent sections we present two alternative, consistent schemes983

for computing the spatial gradient (of any smooth function, with the above being the984

ones of interest), one using the Jacobian of the harmonic map and the other without985

it.986

Computing the Jacobian of the harmonic map. Let J(r) = ∇Ψ(r) be the987

(non-singular) Jacobian of the harmonic diffeomorphism Ψ : M → N . When the988

steady-state is reached in the pseudo-localization algorithm (30) (i.e., Xi(t + 1) =989

Xi(t) = ψi1 and Yi(t+ 1) = Yi(t) = ψi2), we have, ∀ i ∈ S:990

∑

j∈Ni

1

dj
(ψj1 − ψi1) = 0,

∑

j∈Ni

1

dj
(ψj2 − ψi2) = 0,991

992

where i is the index of the agent located at r ∈ M and Ni is the set of agents in a993

disk-shaped neighborhood Bε(r) of area ε centered at r. Rewriting the above, we get,994

∀ i ∈ S:995

ψi1 =

∑
j∈Ni

1
dj
ψj1∑

j∈Ni
1
dj

, ψi2 =

∑
j∈Ni

1
dj
ψj2∑

j∈Ni
1
dj

.(36)996

997

We assume that the agents have the capability in their hardware to perturb the disk of998

communication Bε(r) (by moving an antenna, for instance). The Jacobian J = ∇Ψ999

is computed through perturbations to Ni (i.e., the neighborhood Bε(r)) and using1000

consistent discrete approximations:1001

∂xψ1 ≈
ψ1(r + δxe1)− ψ1(r)

δx
, ∂yψ1 ≈

ψ1(r + δye2)− ψ1(r)

δy
,1002

1003

and similarly for ψ2. Now, ψ1(r + δxe1) is computed as in (36) for N δx
i , the set of1004

agents in Bε(r + δxe1) and ψ1(r + δye2) from Bε(r + δye2).1005

Computing the spatial gradient of a smooth function using the Jacobian1006

of Ψ. Let ∇ = (∂x, ∂y) and ∇̄ = (∂ψ1 , ∂ψ2), where Ψ = (ψ1, ψ2). We have ∂x =1007

(∂xψ1)∂ψ1
+ (∂xψ2)∂ψ2

and ∂y = (∂yψ1)∂ψ1
+ (∂yψ2)∂ψ2

. Therefore, ∇ = J>∇̄. For a1008

smooth function f : M → R, we have, ∇f = J>∇̄f , and the agents can numerically1009

compute ∇̄ by:1010

(
∂f

∂ψ1

)

i

≈ 1

|Ni|
∑

j∈Ni

fj − fi
ψj1 − ψi1

,

(
∂f

∂ψ2

)

i

≈ 1

|Ni|
∑

j∈Ni

fj − fi
ψj2 − ψi2

,1011

1012

where i is the index of the agent located at r ∈ M and Ni is the set of agents in a1013

ball Bε(r).1014

Computing the spatial gradient of a smooth function without the Ja-1015

cobian of Ψ. In the absence of a Jacobian estimate, we use the following alternative1016

method for computing an approximate spatial gradient estimate of a smooth function.1017

This is used in Stage 1 of the self-organization process.1018

Let f̄(r) be the mean value of f over a ball Bε(r):1019

f̄(r) =
1

ε

∫

Bε(r)

fdµ ≈ 1

|Ni|
∑

j∈Ni

fj .1020

1021

27

This manuscript is for review purposes only.



We have:1022

1

ε

∂f̄

∂x
≈ 1

ε

f̄(r + δxe1)− f̄(x)

δx
=

1

ε

∫
Bε(r+δxe1)

fdµ−
∫
Bε(r)

fdµ

δx
1023

=
1

ε

∫

Bε(r)

(f(r + δxe1)− f(r))

δx
dµ1024

≈ 1

ε

∫

Bε(r)

∂f

∂x
dµ =

(
∂f

∂x

)
.1025

1026

Similarly,1027

1

ε

∂f̄

∂y
≈ 1

ε

f̄(r + δye2)− f̄(x)

δy
≈
(
∂f

∂y

)
.1028

1029

In all, for any scalar function f , each agent can use the approximation1030

(∇f)i ≈
((

∂f

∂x

)
,

(
∂f

∂y

))
=

1

ε

(
∂f̄

∂x
,
∂f̄

∂y

)
,(37)1031

1032

to estimate of the gradient ∇f .1033

5.4.3. On the convergence of the discrete system. We have noted earlier1034

that the pseudo-localization algorithm (30) satisfies the consistency condition in that1035

as N → ∞, Equation (30) converges to the PDE (27). The pseudo-localization1036

algorithm is also essentially a weighted Laplacian-based distributed algorithm that is1037

stable. Thus, by the Lax Equivalence theorem [25], the solution of (30) converges to1038

the solution of (27) as N →∞. However, for the distributed control laws in Stages 1-1039

3, we are only able to provide consistent discretization schemes. The dynamics of the1040

swarm (31) with the control laws (32) and (33) are nonlinear for which is no equivalent1041

convergence theorem. Further analysis to determine convergence is required, which1042

falls out the scope of this present work.1043

6. Numerical simulations. In this section, we present numerical simulations1044

of swarm self-organization, that is, of the control laws presented in Sections 4.2 and1045

of Section 5.3.1046

6.1. Self-organization in one dimension. In the simulation of the 1D case,1047

we consider a swarm of N = 10000 agents, the desired density distribution is given by1048

ρ∗(x) = a sin(x) + b, where a = 1− π
2N and b = 1

N , x ∈
[
0, π2

]
. We use a kernel-based1049

method to approximate the continuous density function, which is given by:1050

ρ(t, r) =
∑

i∈S
K

(‖r− ri(t)‖
d

)
,1051

1052

where1053

K(x) =

{
cd
dn , for 0 ≤ x < 1,

0, for x ≥ 1,
1054

1055

is a flat kernel and cd ∈ R>0 is a constant [8]. We discretize the spatial domain1056

with ∆x = 0.001 units, and use an adaptive time step. The self-organization begins1057

from an arbitrary initial density distribution. Figure 2 shows the initial density dis-1058

tribution, an intermediate distribution and the final distribution. We observe that1059

there is convergence to the desired density distribution, even with noisy density mea-1060

surements.1061
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Algorithm 2 Self-organization algorithm for 2D environments

1: Input: M∗, ρ∗ and k1, k2, K (number of iterations for each stage), ∆t (time
step)

2: Requires:
3: Offline computation of p∗ as outlined in Section 5.4.1
4: Boundary agents are aware of being at boundary or interior of domain, can
5: communicate with others along the boundary, can approximate the normal
6: to the boundary, and can measure density of boundary agents,
7: Agents have knowledge of a common orientation of a reference frame
8: Initialize: ri (Agent positions), vi = 0 (Agent velocities)
9: Boundary agents localize as outlined in Section 5.1

10: Stage 1:
11: for k := 1 to k1 do
12: if agent i is at the interior of domain then

13: compute vi(k) = − (∇ρ)i
ρi

(k) from (32), with (∇ρ)i(k) as in (37),

14: move ri(k + 1) = ri(k) + vi(k)∆t
15: else if agent i is at the boundary of domain then
16: compute vi(k+1) = vi(k)− (ri(k)−r∗i (k)+vi(k))∆t from (32), and move

ri(k + 1) = ri(k) + vi(k)∆t

17: Stage 2:
18: Boundary agents map themselves onto unit circle according to (23)
19: for k := 1 to k2 do
20: for agent i in the interior do
21: compute Xi(k + 1), Yi(k + 1) according to (30)

22: Stage 3:
23: for k := 1 to K do
24: for agent i in the interior do
25: compute vi(k+1) = vi(k)+(−ρi(k)(∇(ρ−p∗◦Ψ∗))i(k)+(vi(k)·∇)vi(k)−

vi(k))∆t from (33), with (∇(ρ− p∗ ◦Ψ∗))i(k) as in (37)
26: update ri(k + 1) = ri(k) + vi(k)∆t

6.2. Self-organization in two dimensions. In the simulation of the 2D case,1062

we first present in Figure 3 the evolution of the boundary of the swarm in Stage 1,1063

where the swarm converges to the target spatial domain M∗ from an initial spatial1064

domain. The target spatial domain, a circle of radius 0.5 units, given by M∗ =1065

{(x, y) ∈ R2 | (x − 0.6)2 + y2 ≤ 0.25}, with the desired density distribution ρ∗ given1066

by ρ∗(x, y) = 1
((x−0.4)2+y2)0.3

. We present in Figures 4 and 5 the result of imple-1067

mentation of the pseudo-localization algorithm with the steady state distributions1068

of Ψ∗ = (ψ∗1 , ψ
∗
2) respectively. We note that the steady state distribution Ψ∗ as a1069

function of the spatial coordinates (x, y) in this case is linear. Next, we focus on1070

Stage 3 of the self-organization process, where the agents already distributed over the1071

target spatial domain, converge to the desired density distribution. The initial density1072

distribution of the swarm is uniform, and the distributed control law of Stage 3 in1073

Section 5.3, following the discretization scheme outlined in Section 5.4 is implemented.1074

Figure 6 shows the density distribution at a few intermediate time instants of imple-1075

mentation and figure 7 shows the spatial density error plot, where e(ρ) =
∫
M∗ |ρ−ρ∗|21076

is the spatial density error. The results show convergence as desired.1077
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Fig. 2: Density ρ(x) plotted against position x at different instants of time.

Fig. 3: Evolution of the swarm boundary in Stage 1.

7. Conclusions. In this paper, we considered the problem of self-organization1078

in multi-agent swarms, in one and two dimensions, respectively. The primary contri-1079

bution of this paper is the analysis and design of position and index-free distributed1080
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Fig. 4: Steady-state distribution of ψ∗1 . Fig. 5: Steady-state distribution of ψ∗2 .

Fig. 6: Evolution of density distribution in Stage 3.

control laws for swarm self-organization for a large class of configurations. This was1081

accomplished through the introduction of a distributed pseudo-localization algorithm1082

that the agents implement to find their position identifiers, which then use in their1083

control laws. The validation of the results for more general non-simply connected do-1084

mains will be considered in the future. An extension to this work will involve the char-1085
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Fig. 7: Spatial density error e(ρ) =
∫
M∗ |ρ− ρ∗|2 vs time,

acterization of constraints on the local density function to capture finite robot sizes1086

and collision avoidance constraints, as well as accounting for possible non-holonomic1087

constraints on the motion of the robots.1088
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