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DISTRIBUTED CONTROL FOR SPATIAL SELF-ORGANIZATION
OF MULTI-AGENT SWARMS*
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Abstract. In this work, we design distributed control laws for spatial self-organization of multi-
agent swarms in 1D and 2D spatial domains. The objective is to achieve a desired density distribution
over a simply-connected spatial domain. Since individual agents in a swarm are not themselves of
interest and we are concerned only with the macroscopic objective, we view the network of agents in
the swarm as a discrete approximation of a continuous medium and design control laws to shape the
density distribution of the continuous medium. The key feature of this work is that the agents in
the swarm do not have access to position information. Each individual agent is capable of measuring
the current local density of agents and can communicate with its spatial neighbors. The network
of agents implement a Laplacian-based distributed algorithm, which we call pseudo-localization, to
localize themselves in a new coordinate frame, and a distributed control law to converge to the
desired spatial density distribution. We start by studying self-organization in one-dimension, which
is then followed by the two-dimensional case.

1. Introduction. Self-organization in swarms refers broadly to the emergence
of patterns of long-range order in large collectives of dynamic agents which interact
locally with each other. Self-organization is a pervasive phenomenon in nature, ob-
served in biological [6] and other natural systems [27]. This has greatly inspired the
development of large scale robotic counterparts [23], with applications to monitoring,
manipulation, and construction. This transition does not merely involve an increase in
the size of robotic networks, but it also introduces new theoretical challenges for their
analysis and control design. In particular, large groups of agents have some essen-
tial characteristics that distinguish them from other smaller-scale counterparts. In a
swarm, individual agents have no significance and only the macroscopic objectives are
relevant. A swarm largely remains unaffected by the removal of a large, but discrete,
number of agents. Moreover, it is difficult (and needlessly complicated) to specify
the global configuration of the swarm using the states of individual agents; instead,
employing macroscopic quantities such as the swarm spatial density distribution to
specify its configuration is more appropriate. From an analysis and control-theoretic
viewpoint, the dynamic modeling of swarms is less explored, which e.g. can be es-
tablished by means of PDEs, for which control theoretic tools are less well developed
in comparison to ODEs. These theoretical challenges motivate the investigation of
self-organization in large-scale swarms.

In the literature, Markov-chain based methods have been widely used in address-
ing some of the key theoretical problems pertaining to swarm self-organization. By
means of it, the swarm configuration is described through the partitioning the spatial
domain in a finite number of larger size disjoint subregions, on which a probability
distribution is defined. Then, the self-organization problem is reduced to the design
of the transition matrix governing the evolution of this probability density function
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to ensure its convergence to a desired profile. A recent approach to density control
using Markov chains is presented in [10], which includes additional conflict-avoidance
constraints. In this setting every agent is able to determine the bin to which it be-
longs at every instant of time, which essentially means that individual agents have
self-localization capabilities. Also, the dimensional transition matrix is synthesized
in a central way at every instant of time by solving a convex optimization problem.
In [3], the authors make use of inhomogeneous Markov chains to minimize the number
of transitions to achieve a swarm formation. In this approach, the algorithm necessi-
tates the estimation of the current swarm distribution, and computes the transition
Markov matrices for each agent, at each instant of time. The fact that every agent
needs to have an estimate of the global state (swarm distribution) at every time may
not be desirable or feasible. The localization of each agent still remains to be a main
assumption. Under similar conditions, one can find the manuscripts [1] and [7], which
describe probabilistic swarm guidance algorithms. In [5], the authors present an ap-
proach to task allocation for a homogeneous swarm of robots. This is a Markov-chain
based approach, where the goal is to converge to the desired population distribution
over the set of tasks.

In the context of robotic swarms, programmable self-assembly of two-dimensional
shapes with a thousand-robot swarm is demonstrated in [24]. These robots are capable
of measuring distances to nearby neighbors which they use to localize themselves
relative to other localized robots. Each robot then uses its position to implement an
edge-following algorithm.

Another approach uses partial differential equations to model swarm behaviour,
and control action is applied along the boundary of the swarm. Previous works on
PDE-based methods with boundary control include [14], where the authors present
an algorithm for the deployment of agents onto families of planar curves. Here, the
swarm collective dynamics are modeled by the reaction-advection-diffusion PDE and
the particular family of curves to which the swarm is controlled to is parametrized by
the continuous agent identity in the interval of unit length. An extension of this work
to deployment on a family of 2D surfaces in 3D space can be found in [22]. More-
over, in [13] the authors present a distributed optimal control problem formulation for
swarm systems, where microscopic control laws are derived from the optimal macro-
scopic description using a potential function approach. The problem of position-free
extremum-seeking of an external scalar signal using a swarm of autonomous vehicles,
inspired by bacterial chemotaxis, has been studied in [21].

In this work, we adopt a viewpoint outlined in [2], wherein we make an amorphous
medium abstraction of the swarm, which is essentially a manifold with an agent
located at each point. We then model the system using PDEs and design distributed
control laws for them. An important component of this paper is the Laplacian-
based distributed algorithm which we call pseudo-localization algorithm, which the
agents implement to localize themselves in a new coordinate frame. The convergence
properties of the graph Laplacian to the manifold Laplacian have been studied in [4],
which find useful applications in this paper.

The main contribution of this paper is the development of distributed control laws
for the index- and position-free density control of swarms to achieve general 1D and
a large class of 2D density profiles. In very large swarms with thousands of agents,
particularly those deployed indoors or at smaller scales, presupposing the availability
of position information or pre-assignment of indices to individual agents would be a
strong assumption. In this paper, in addition to not making the above assumptions,
the agents are only capable of measuring the local density, and in the 2D case, the
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93 density gradient and the normal direction to the boundary.
94 Under these assumptions, we present distributed pseudo-localization algorithms
95 for one and two dimensions that agents implement to compute their position identi-
96 fiers. Since every agent occupies a unique spatial position, we are able to rigorously
97 characterize the resulting position assignment as a one-to-one correspondence between
98 the set of spatial coordinates and the set of position identifiers, which corresponds
99 to a diffeomorphism of the continuum domain. Based on this assignment, we then
100 design control strategies for self-organization in one and two dimensions under the
1 assumption that the motion control of agents is noiseless. The extension to the 2D
2 case leads to new difficulties related to the control of the swarm boundaries. To ad-
3 dress these, we implement a variant of the 1D pseudo-localization algorithm at the
1 boundary during an initialization phase. A preliminary version of this work appeared
5 in [18] where we presented an outline of the algorithms and state some of the results.
6 We develop them here rigorously, providing detailed proofs for our claims.
7 The paper is organized as follows. In Section 2, we introduce the basic notation
8 and preliminary concepts used in the manuscript. We present the analysis of self-
9 organization in one dimension in Section 4, where we introduce the pseudo-localization
110 algorithm in Section 4.1 and the distributed control law in Section 4.2. After this, we
111 generalize and extend the analysis for self-organization in two dimensions in Section 5.
112 Section 6 contains numerical simulations of the results in the paper, and in Section 7,
113 we present our conclusions.

114 2. Preliminaries. Let R denote the set of all real numbers, R>( the set of non-
115 negative real numbers, and R™ the n-dimensional Euclidean space. We use boldface
116 letters to denote vectors in R™. The norm |x| of a vector x € R™ is the standard

117  FEuclidean 2-norm, unless otherwise specified. Let V = ( 8%""%) denote the

118 gradient operator in R™ when acting on real-valued functions and the Jacobian in
119 the context of vector-valued functions. As a shorthand, we let %(-) = 0,(-) for a

120 wvariable z. Let A = Z?:l 8%2 be the Laplace operator in R". We denote by either
ds

121 S or % the total time derivative of S(t). Given functions f,g : R — R, we write
122 f = O(g) if there exist positive constants C' and ¢ such that |f(h)| < C|g(h)|, for
123 all |h] < c. Let S denote the set of agents in the swarm, and NV its cardinality. For
124 the 1D case, let [ € S denote the leftmost agent, and r € S the rightmost one. Let
125 N denote the spatial neighborhood of agent 4, which comprises those agents located
126 inside a small ball centered at i. A set-valued mapping, denoted by f : R = R2,
127 maps the set of real numbers onto subsets of R?. For a bounded open set Q2 C R",
128 9 denotes its boundary, O = Q U 09 its closure and € = Q \ 99 its interior with
129 respect to the standard Euclidean topology. The set of smooth real-valued functions
130 on € is denoted by C*°(Q2). We let u (or dz in 1D) denote the standard Lebesgue
131 measure; with a slight abuse of notation, we sometimes omit du (resp. dz in 1D) from
132 long integrals. The Dirac measure § on €2 defined for any = € {2 and any measurable
133 set D C Q is given by §,(D) =1 for x € D, and §,(D) =0 for = ¢ D.

134 For two non-empty subsets M; and Ms of a metric space (M, d), the Hausdorff
135 distance dg (Mj, M) between them is defined as:

136 (1) dp(My, M) = max{ sup inf d(z,y), sup inf d(z,y)}.

137 z€M; YEM2 yEMo TEM:

138 The set of functions on a measurable space U, given by LP(U) = {f : U —= R || f||.rw) =}
139 ([, |f\pdu)1/p < oo}, constitute the LP space, where || - ||L»(¢y is the L? norm. Of
3

This manuscript is for review purposes only.



163
164

165

166

167
168

169

particular interest is the L? space, or the space of square-integrable functions. In
this paper, we denote by || f||z2() the L? norm of f with respect to the Lebesgue
measure, and by || f| z2(v,,) the weighted L? norm (with the strictly positive weight p
on U). The Sobolev space W1?(U) over a measurable space U is defined as WP (U) =

{f:U=RIfllwee = (J IFIP+ [5 |Vf\”)1/p < oo}. Of particular interest is the
space W12 also called the H! space. For two functions f(¢,-) and g(-), we denote by
f —1r2 g the convergence in L? norm (over the domain U of the functions) of f(t,-)
to g(-) as t — oo, that is, limy_oo || f(¢,-) — g(*)||z2 = 0. Convergence in H! norm is
denoted similarly by f — g1 g.

We now state some well-known results that we will be used in the subsequent
sections of this paper.

LEMMA 2.1. (Divergence Theorem [9]). For a smooth vector field F over a
bounded open set @ C R™ with boundary 02, the volume integral of the divergence
V - F of F over Q is equal to the surface integral of F over 0€):

2) /Q(V~F)du:/ F n ds,

[219]

where n is the outward normal to the boundary and dS the measure on the boundary.
For a scalar field U and a vector field F defined over Q C R™:

/Q(F-VU) dMZ/BQU(F.n) dS—/ﬂU(V~F) .

LEMMA 2.2. (Leibniz Integral Rule [9]). Let f € C*(RxR"™) and Q : R = R
be a smooth one-parameter family of bounded open sets in R™ generated by the flow
corresponding to the smooth vector field v on R™. Then:

d
% </Q(t) f(tﬂ') dM) = o at(f(t,r)) du + /aﬂ(t) f(t,r)v .n ds.

COROLLARY 2.3. (Derivative of Energy Functional). Let U be an energy
functional defined as follows:

1
v=3 [ 1 d
Q

for some function f:Q — R. Then,

d 1
8tU/Qf~(dJ;> du+§/9|f|2V~vdu.

where % = 0; + v -V is the total derivative.

Proof. We have included the proof for this corollary for the sake of completeness.
Using the Leibniz integral rule and the Divergence theorem, we have (it is understood

4
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that the integrations are with respect to the measure yu):

= [ fsrg [ iPven
S RAL RS ARUiee

= [t [ Wi g [ 1579y
= [ 1w+ 1Yy

=/Qf-(iz)+;/ﬂlfl2v~v .

LEMMA 2.4. (Poincaré-Wirtinger Inequality [20]). Forp € [1,] and Q, a
bounded connected open subset of R™ with a Lipschitz boundary, there exists a constant

C depending only on 0 and p such that for every function u in the Sobolev space
Wtr(Q):

v = uallLr@) < ClVullLr (),
where ug = ﬁ Joudp, and |Q| is the Lebesgue measure of Q.

LEMMA 2.5. (Rellich-Kondrachov Compactness Theorem [12]). Let U C
R™ be open, bounded and such that OU is C'. Suppose 1 < p < n, then WHP(U) is
compactly embedded in LY(U) for each 1 < q < np—fp. Moreover, for [0,L] C R, the

inclusion W2([0, L)) C L*([0, L)) is also compact.

LEMMA 2.6. (LaSalle Invariance Principle [16, 26]). Let {P(t)|t € R>o}
be a semigroup of nonlinear operators acting on U (closed subset of a Banach space
with norm || - ||), and for any u € U, define the positive orbit starting from w at t =0
as Ty (u) = {P)ult € Rxo} C U (we assume {P(t)|t € R>o} to be such that the
orbit T'y (u) is smooth). Let V be a Lyapunov functional on U (such that V(u) < 0
in U). Define E = {u € U|V(u) = 0}, and let E be the largest invariant subset
of E. If for ug € U, the orbit 'y (ug) is pre-compact (lies in a compact subset of U ),
then limy_, 4 o d(P(t)uo, E) = 0, where d(y, E) = inf, 5 lly — |-

2.1. Continuum model of the swarm. Given that N, the number of agents
in the swarm, is very large, we will analyze the swarm dynamics through a continuum
approximation. Let ¢t € R>¢, and let M : R = R™ be a smooth one-parameter family
of bounded open sets, such that the agents are deployed over M (t) at time t. We
denote by 7;(t) = v;, Vi € S, where r;(t) € M (t) is the position of the ith agent in the
swarm at time ¢. Let p: R>g x R™ = R>( be the spatial density function supported
on M(t) for all t > 0 (with p(t,r) > 0 for r € M(t)), such that fM(t) p(t,r)dpy = 1.
We assume that M (t) is simply connected and that the boundary OM(¢) does not
self-intersect for all ¢ > 0.

Assuming that p is smooth, the macroscopic dynamics can now be described by
the continuity equation [9], assuming that the total number of agents is conserved:

(3) %+V'(pv)=0, Vre M),

where v : R>o X R” — R” is the velocity field with v;(¢t) = v(¢,r;), such that the
one-parameter family M is generated by the flow associated with v.

5
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2.2. Harmonic maps and diffeomorphisms. Let (M, g) and (N, h) be two
Riemannian manifolds of dimensions m and n, and Riemannian metrics g and h,
respectively. A map ¢ : M — N is called harmonic if it minimizes the functional:

() B) = [ |dofdu,
M
where dvg is the Riemannian volume form on M, and |d¢| is the Hilbert-Schmidt
norm of d¢ given at each point € M, in local coordinates (x!,...,2™) on M, by:
- 0o~ a¢ﬂ
2 _ i h -r
5) 0el? = 6 (2)has(6() G 5

Here, we use the Einstein summation convention, where a summation is implicit over
repeated superscript-subscript pairs (i.e., k'l; = >, k'l;). When g and h are both the
Euclidean metric § (where d;; = 1 if ¢ = j and 0 otherwise), we have:

(6) s =303 (gﬁ)z

The Euler-Lagrange equation for the functional E, which also yields the minimum
energy, is given by A¢ = 0, the Laplace equation [17]. It is useful to note that the
solutions to the heat equation, in the limit ¢ — co, approach the harmonic map. This
is proved later in Lemma 5.1, and forms the basis for the design of the distributed
pseudo-localization algorithm. We now state a lemma on harmonic diffeomorphisms
of Riemann surfaces (i.e., m = n = 2 above).

LEMMA 2.7. (Harmonic diffeomorphism [11]). Let (M, g) be a compact sur-
face with boundary and (N, h) a compact surface with non-positive curvature. Suppose
that v : M — N is a diffeomorphism onto (M). Assume that (M) is convez.
Then there is a unique harmonic map ¢ : M — N with ¢ = ¢ on OM, such that
¢: M — ¢(M) is a diffeomorphism.

We note that the non-positive curvature constraint in the lemma is essentially a
constraint on the metric A on N, and the curvature is zero for the Euclidean metric.

3. Problem description and conceptual approach. In this section, we pro-
vide a high-level description of the proposed problem and explain the conceptual idea
behind our approach. The technical details can be found in the following sections.

The problem at hand is to ultimately design a distributed control law for a swarm
to converge to a desired configuration. Here, a swarm configuration is a density
function p of the multi-agent system and the objective is that agents reconfigure
themselves into a desired known density p*. To do this, an agent at position x is able
to measure the current local density value, p(t, x); however, its position x within the
swarm is unknown. Thus, given p*, an agent at x cannot directly compute p*(z) nor
a feedback law based on p — p*. To solve this problem, we devise a mechanism that
allows agents to determine their coordinates in a distributed way in an equivalent
coordinate system.

Note that, given a diffeomorphism ©* from the spatial domain of the swarm onto
the unit interval or disk (i.e. a coordinate transformation), we can equivalently pro-
vide the agents with a transformed density function p*, such that p* = p* o (©*)~1.
In this way, instead of p* the agents are given p*, but still do not have access to ©*.
The pseudo-localization algorithm is a mechanism that agents employ to progressively

6
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260 compute an appropriate (configuration-dependent) diffeomorphism by local interac-
261  tions.

262 In 1D, the pseudo-localization algorithm is a continuous-time PDE system in
263 a new variable or pseudo-coordinate X which plays the role of an “approximate x
264 coordinate” that agents can use to know where they are. The input to this system is
265 the current density value p, see Figure 1 for an illustration, and the objective is that
266 X converges to a p-dependent diffeomorphism. On the other hand, the variable X
267 and the function p* are used to define the control input of another PDE system in the
268 density p. In this way, we have a feedback interconnection of two systems, one in X
269 and one in p, with the goal to achieve X — ©* (the pseudo-coordinate X converges

to a true coordinate given by ©*) and p — p*.

atX = G(X7 p)

\

: X — O (coordinates)

p — p* (objective)

Op = F(p, X,p")

Fig. 1: Feedback interconnection of pseudo-localization system in X and system in p
in the 1D case. The function p* is an equivalent density objective provided to agents
in terms of a diffeomorphism ©*. The variables X play the role of coordinates and
eventually converge to the true coordinates given by ©*. Agents use p* and X to
compute the control in the equation p. In turn, agents move and this will require a
re-computation of coordinates or update in X. The control strategy in the 2D case
(stages 2 and 3) can be interpreted similarly.

1 As for the control design methodology, we broadly follow a constructive, Lyapunov-J
2 based approach to designing distributed control laws for the swarm dynamics modeled
'3 by PDEs. For this, we define appropriate non-negative energy functionals that en-
1 code the objective and choose control laws that keep the time derivative of the energy
5 functional non-positive. This, along with well-known results on the precompactness
6 of solutions as in Lemma 2.5, the Rellich Kondrachov compactness theorem, allows us
7 to apply the LaSalle Invariance Principle in Lemma 2.6 and other technical arguments
'8 to establish the convergence results that we seek.

9 In the 1D case, we can identify a set of diffeomorphisms © associated with any
280 p that eventually converge to ©*, and simultaneously control boundary agents into
281  a desired final domain (the support of p*). These are given by the cumulative dis-
282 tribution function associated with the density function; see Section 4.1. The 2D case
283 is more complex, and analogous results could not be derived in their full generality.
284  First, unlike the 1D case, a cumulative distribution does not lead to a diffeomorphism
285 in general. Instead, we set out to find diffeomorphisms as the result of a distributed
286 algorithm. Given that the discretization of heat flow naturally leads to distributed
287 algorithms, we investigate under what conditions this is the case via harmonic map
288 theory. On the control side, there also are additional difficulties, and because of this,
289  we simplify the control strategy into three stages. In the first stage, the boundary
200 agents are re-positioned onto the boundary of the desired domain while containing
291 the others in the interior. Once this is achieved, the second and third stages can be
292 seen again as the interconnection of two systems in pseudo-coordinates R = (X,Y)

7
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(instead of X) and p, analogously to Figure 1. However, we apply a two time-scale
separation for analysis by which coordinates are computed in a fast-time scale and
reconfiguration is done in a slow-time scale, which allows for a sequential analysis of
the two stages. We then study the robustness of this approach.

4. Self-organization in one dimension. In this section, we present our pro-
posed pseudo-localization algorithm and the distributed control law for the 1D self-
organization problem.

Mathematically, for each ¢ € R>g, let M (¢) = [0, L(¢)] C R be the interval in which
the agents are distributed in 1D, and let p: R x R — R>¢ be the normalized density
function supported on M (t), for all t > 0 (with p(¢,z) > 0, Vo € M(t)), describing the
swarm on that interval. Without loss of generality, we place the origin at the leftmost
agent of the swarm. We also assume that the leftmost and the rightmost agents, [
and r, are aware that they are at the boundary. Let p* : M* = [0, L*] — R be the
desired normalized density distribution.

Since a direct feedback control law can not be implemented by agents because
they do not have access to their positions, we introduce an equivalent representation
of the density p*, p*, depending on a particular diffeomorphism ©*. First, define
©* : M* — [0,1] such that ©*(z) = [; p*()dz and ©*(L*) = 1.

Now, let p* : [0,1] — Rsg, and 6* € ©*(M*) = [0,1], be such that p*(§*) =
p((07)71(0%)) = p*(a).

ze0,L] — ©%(z) =0 €[0,1]

The function p*, which represents the desired density distribution mapped onto
the unit interval [0, 1], is computed offline and is broadcasted to the agents prior to
the beginning of the self-organization process. We use p* to derive the distributed
control law which the agents implement. We assume that p* is a Lipschitz function
in the sequel.

4.1. Pseudo-localization algorithm in one dimension. We first consider
the static case, that is, the design of the pseudo-localization dynamics on X of the
upper block in Figure 1, when the agents and p are stationary. We define © : M =
[0,L] — [0,1] as:

() o(x) = / " p(@)dz,

such that ©(L) = 1. In other words, © is the cumulative distribution function (CDF)
associated with p. (Note that the domains are static and hence the argument ¢ has
been dropped, which will be reintroduced later.)

LEMMA 4.1. (The CDF diffeomorphism). Given p : M — Rso a smooth
function, the mapping © : M — [0,1] as defined above, is a diffeomorphism and
O(M) =[0,1].

Proof. Since p(x) > 0, Vo € M, it follows that © is a strictly increasing function
of x, and is therefore a one-to-one correspondence on M. Moreover, © is smooth

and has a differentiable inverse, which implies it is a diffeomorphism. Finally, since
O(L) =1, we have O(M) = [0, 1]. d
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Our goal here is to set up a partial differential equation with appropriate boundary
conditions that yield the diffeomorphism © as its asymptotically stable steady-state
solution. We begin by setting up the pseudo-localization dynamics for a stationary
swarm (for which the spatial domain M and the density distribution p are fixed). Let
X : R x M — R be such that (¢,2) — X (¢,2) € R, with:

p
X(t,0) = a(t),

(8) X(t,L) = B(),
da(t) = —af(t),
9B(t) =1-B(1),
X(O,l’) = XO(x)a

where o : R — R is a control input at the boundary = 0 and 5 : R — R is a control
input at the boundary # = L. From (7), we observe that 0, (%) = 0. Letting

w = X — O denote the error, we obtain:

1
dew = —0, (a””w> ,
p p

w(t,0) = aft),
(9) w(t, L) = B(t) — 1,
Ayw(t,0) = —w(t,0),
Oyw(t, L) = —w(t, L),
w(0,z) = wo(x) = Xo(z) — O(x).

Assumption 4.2. (Well-posedness of the pseudo-localization dynamics).
We assume that the pseudo-localization dynamics (8) (and (9)) is well-posed, that
the solution is sufficiently smooth (at least C? in the spatial variable, even as t — 00)
and belongs to the Sobolev space H'(M) for every t € R>y.

LEMMA 4.3. (Pointwise convergence to diffeomorphism). Under Assump-
tion 4.2, on the well-posedness of the pseudo-localization dynamics, and for bounded p,
the solutions to PDE (8) converge pointwise to the CDF diffeomorphism © defined in
(7), as t — oo, for all smooth initial conditions Xj.

Proof. We prove that the solutions to the PDE (8) converge pointwise to the
diffeomorphism © by showing that w — 0, as ¢ — oo, pointwise for (9). For this, we
consider a functional V', given by (integrations are taken with respect to the Lebesgue
measure):

1 1 1
sz/ pw2+7/78‘rw2.
5/ o5 [ ol

The time derivative V is given by:

V= [ pwow)+ [ S@a)@0.0)

9
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Here, replace 0;w in the first integral with the dynamics in (9), and then use 9;0,, =
0,0; in the second integral together with the Divergence Theorem in Lemma 2.1. We
obtain:

M p M P P
B w + Oyw

2
:7/ 1|axw|2/1az<8fw) SR
M P M P P L p

(After the second equal sign, apply again the Divergence Theorem on the first integral
of the previous line, and replace dyw from (9).) Substituting from (9), we have:

] ] 9 2
M M IC

Clearly, V < 0, and w(t,-) € H'(M), for all t. By the Rellich-Kondrachov Com-
pactness Theorem of Lemma 2.5, H'(M) is compactly contained in L?(M). Thus,
by the LaSalle Invariance Principle of Lemma 2.6, the solution to (9) converges to
the largest invariant subset of V~1(0). Note that V = 0 implies [, %|8Iw|2 = 0.

Thus, we have limy_o [}, %|8mw|2 = 0. Since p is bounded (supp < o0), we have

Ogw

L 0

0

lim s o0 qui)p Lo 10zw]? < limy oo [, r1>|8 w|? = 0, which implies lim; o [}, [Oxw|* =
limy o0 ||0 w||L2 (an = 0. Now, limy o0 [w(t, )| = limy—o0 |w(t 0) + [ dewl(t,-)| <

lim; o0 |w(t,0) |+f0 |0zw(t, )| < limy o0 [w(t,0)|4 /L (t)||0pw(t, -)|| L2 (ar) = O (since
limy o0 w(t, O) =0 and hmt_>O<J |0z w(t, )HLQ(M =0). Thus, hmt_mow(t x) =0, for
all z € M. Therefore, the solutions to (9) converge to w = 0 pointwise, as t — oo,
from any smooth initial wg = X9 — O. ]

We now have that the solution to the pseudo-localization dynamics converges to
the diffeomorphism O in the stationary case. For the dynamic case, we modify (8) to
account for agent motion. Let X : R x R — R be supported on M (¢) = [0, L(t)] for
all t > 0. Using the relation %X = 9, X + v9, X, where v is the velocity field on the

dt —
spatial domain, we consider:
1 0. X
atX = *ar ( ) — ’UaxX,
P p
(10) X(t,O) =0,

X(t, (1)) = B(t),

In the dynamic case, and w.l.0.g. we have set «(t) = 0 for all ¢ > 0, for simplicity. We
will use the above PDE system in the design of the distributed motion control law,
redesigning the boundary control S to achieve convergence of the entire system. We
now discretize (10) to obtain a distributed pseudo-localization algorithm. Let X;(t) =
X (t,;), where x; € M(t) is the position of the i'" agent. We identify the agent i
with its desired coordinate in the unit interval at time ¢, i.e., O(¢t,z) = 6 € [0,1],
where O(¢,x) fo (t,z)dz from (7), which now shows the time dependency of p.
In this way, p(t,z) = 0,0(t,x). It follows that 9,(-) = 9p(-)0,0 = y(-)p. Therefore,
%895(-) = 0p(+). From (10), we have:

X
002"

dX

1 X
(11) — =0 X +v0, X = -0, (890
dt )

) = 0p (9 X) =

10
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Now, we discretize (11) with the consistent finite differences dd—)t( ~ W and

2 9. ) 3 . ) X,

%9)2( ~ % (that is, we have that lima; o W = % and that
N — . . 2

limap—0 %eij“l = 2%, Now, with the choice 3At = (A#)2, and from (10),

we obtain for i € S\ {l,r}:

Xift+1) = 3 (Xia () + Xil6) + Xia (1),
(12) Xi(t) =0,

Xr(t) = ﬂ(t),

X;(0) = Xo,.

Equation (12) is the discrete pseudo-localization algorithm to be implemented syn-
chronously by the agents in the swarm, starting from any initial condition Xy. The
leftmost agent holds its value at zero while the rightmost agent implements the bound-
ary control 8. In the following section we analyze its behavior together with that of
the dynamics on p.

4.2. Distributed density control law and analysis. In this subsection, we
propose a distributed feedback control law to achieve p — p* and w — 0, as t — oo,
through a distributed control input v and a boundary control 3. We refer the reader to
[19] for an overview of Lyapunov-based methods for stability analysis of PDE systems.

From (3) and (10), we have the dynamics:

Orp = =0y (pv),

X = %az (a’ﬂX) — v, X,
1
(13) X(t,0) =0,

X(¢, L(t)) = B(t),
X(07$) = X()(.’E).

This realizes the feedback interconnection of Figure 1.

Assumption 4.4. (Well-posedness of the full PDE system). We assume
that (13) is well posed, and that the solution p(t, -) (resp. X (¢, -)) is sufficiently smooth
and belongs to the Sobolev space H'([0, L(t)]), for all t € R>q (resp. X belongs to
the Sobolev space H'(M(t)) for all t € R>q).

We also assume that the agent at position x at time ¢ is able to measure p(t,x).
However, the agents in the swarm do not have access to their positions, and therefore
cannot access p*(z), which could be used to construct a feedback law. To circumvent
this problem, we propose a scheme in which the agents use the position identifier or
pseudo-localization variable X to compute p* o X (¢, x), using this as their dynamic
set-point. The idea is to then design a distributed control law and a boundary control
law such that p — p*o X and X — ©* ast — o0, to obtain p — p* 0 ©* = p*. Recall
that the function p* is computed offline and is broadcasted to the agents prior to the
beginning of the self-organization process, and that p* is assumed to be a Lipschitz
function. Consider the distributed control law, defined as follows for all time t:

v(t,0) =0,

(14) Oxp” (an)
Ov=(p—p*oX)— Do :
lo=poX) p(p+p* o X)

11
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163

464

465

166

467

468
469

together with the boundary control law:
X(t,0) =0,

(15) Xs

ﬁt=k<2—ﬁ(t)—

L(t)> .

We remark again that the agents implementing the control laws (14) and (15) do not
require position information, because for the agent at position x at time ¢, p(¢,z) is a
measurement, X (¢, ) is the pseudo-localization variable, through which p* o X (¢, x)
can be computed.

THEOREM 4.5. (Convergence of solutions). Under the well-posedness As-
sumption 4.4, the solutions (p(t,-), X (t,-)) to (13), under the control laws (14) and
(15), converge to (p*,0*), p = p* and X — O* pointwise, as t — oo, from any
smooth initial condition (pg, Xo)-

Proof. Consider the candidate control Lyapunov functional V:

1 [E® 1 [0 18,02 1
V=_ —p*o X|?dx + = T dr + —|w(L(t))|?.
5 lo—voxPareg [T B dr ot Suzn)

Taking the time derivative of V along the dynamics (13), using Lemma 2.2 on the
Leibniz integral rule, and applying Corollary 2.3 on the derivative of energy function-
als, we obtain:

d X 1 [H®
V= / (p—p oX)( p_dw’o )>dm+2/ lp — p* o X|?0pv dx
0

dt dt
L0 (0,w) (910, RN 1 (9w)? |*V
N Y R R L
0 P 0 P p 0
dw(L(t
+w(L)7(dt( ),

Now, ¢ L = 0ip+v0,p = —p0yv (since Oyp = —0,(pv), from (13)). Also, 0;0, = 0,0;,

L(t)
which implies that fOL(t) M{?i‘a’rw)dm = fOL(t) M{?watwdm = MP(BW) _

— fOL(t) Oy (aj)“’) (Oyw)dx (using the Divergence theorem in the second integral), and

we obtain:

) L(t)
V:/ (p—p oX) [p&cvﬁxp*l@m (a””X)]d:c
0 P p

L(t) L(t)
_ / 0, (a””w> (Oyw)da
0 0 P

o dw(L(t))
0 dat -

1 L(t) az
—|—f/ lp—p* o X|?0,v dw—i——watw
2 Jo P

1 /L(t) ((’“)Iw>2 1 (0,w)?
+ - Oz (pv)dx + = v
2 Jo P (ev) 2 p

From (13), we have that O,w = %5} (6zw

P
L(t) L(t) 1
0 P 0 P P

12

) — v0w, thus:

2 L)
dx —/ Oy (E)ww) (Ozw)vdx.
0 P
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170 Now, using the above equation, applying the Divergence theorem (2) (integration by

1 L) (M

471 parts) to the term 5 [, :

2
) Oz (pv)dz, and rearranging the terms, we obtain:

. L(t) * X
v Vet [ mr o o 0000+ 22, (23
0

2
2 L(t)
Oy <6xw) der/ Oy <61w) (Opw)vdx
p 0 p

L(t) 1
A73 - / -
0 P

L(t) L(t) 2 |L(t) dw(L(+
474 - / (0pw)0y <8mw> vdx + a””watw + Mv + w(L)M
475 0 P P 0 p 0 dt
L(t) , [L® L(t) L(t)
476 Since mTwBtw + @v = ai)w (Oyw + VO w) = azw% , the above
0 0 0 0
177 equation reduces to:
: 1 [E® Oxp* . [0.X
78 V=g [ emp o) [ p e @) + 20, dz
2 Jo p p
L) 1 Orw 2 Oz w dw |F®
479 — — |0, dx + 4w | —
180 o P P P dt |,
181 From (14) and (15), we have 2%| = 0 and 4% —k (89;“) —l—w) , and we
0 L(t) L(t)
482 obtain:
: 1 [tm Oxp* , [0:.X
183 V:—f/ (p—p*oX) (p+p*oX)(8zv)+X7p8z dz
2 Jo p p
L(t) 9 2 ) 2
484 —/ 181<mw) do — k|2 4w
485 o P P P L(t)
486 With ;v =(p—p* o X) — #’im&; (8pr) as in (14), we get:
. 1 [L® L(t) 1 O 2
szf/ (p+p*oX)|p—p*oX|2dx7/ 8z< w) dx
2 Jo o P p
487 (16)
Ozw 2
—k +w .
P L(t)

488

189 Clearly, V < 0, and p(t,-), w(t,.) € H'([0,sup, L(t)]), for all . By Lemma 2.5, the
490 Rellich-Kondrachov Compactness Theorem, the space H!([0,sup, L(t)]) is compactly
491 contained in L?([0,sup, L(t)]), and by the LaSalle Invariance Principle, Lemma 2.6,
192 we have that the solutions to (13) converge to the largest invariant subset of V=1(0).
493 This implies that:

01 Jm [t -) = p* o X(E, )| L2 (po.Ley)) = 0
. Opw

55 i 10, (%) lesoscon = 0

196 lim Oat0 +w(t,L(t)) | =0.

497 e P L®)

13
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Also, w(t,0) = 0 and, from the smoothness of w, we have w(t,z) = [ d,w. From

above, we have lim;_, o ||0x ( ) |2 ((0,2.4)),p) = 0, and using the Poincaré-Wirtinger
Ogw
p

inequality, Lemma 2.4 (with the weighted measure pdu), we get lim; |
L L
S dawlleqo.nn = 0. Now [

limy s 00 w(t, L(t)) = limy 00 —82“1

Oz w = w(t,L(t)) and from above we have

, which implies that:
L(t)

Orxw  Ogyw
+
p

=0.
L2([0,L()].p)

(t, L(t))

lim
t—o00

It can be shown from above that lim;_, .o HM‘

2o (1, L(1)|
L2([0,L(¢)],p) P
and that the Cauchy-Schwarz inequality for the (weighted) inner product of the func-

tions apw( ,+) and Q‘Tw(u L(t)) in the limit ¢ — oo is indeed an equality. This implies:
tim | %%, -)‘ ~ tim | 2%, L(t))‘
t—o0 P t—o0 P

almost everywhere in [0, L(¢)]. Owing to the smoothness of w, we therefore have
limy 00 8“Tw(t, 9 =limy o0 a;)w (t, L(t)) a.e., and we get:
. Opw
lim ’ z = lim H8 ’LU||L2 ([0,L(®)]) = 0.
el Pl o,y 1T

Using the Poincaré-Wirtinger inequality, Lemma 2.4, again, we note that this implies

im0 [0 — i w]| 20,5y = 0. We have limy o | f”t w| = | fF [ 9,0 <
L(t)3/2||8xw\|Lz([o7L(t)]) = 0, which implies that lim; ., fo M = 0 and therefore
limg oo |wl[z2(j0,t)) = 0. Thus, we get lim; o [|w(t, )|z (0,0e))) = 0, or in
other words, w — g1 0. Now, limy_, o |w(t, z)| = hthoo lw(t,0) + [ 0 w( )| <

limy o0 [w(t, 0)] + f3 |0pw(t, )| < limy_o |w(t, 0)] 4 /L(t) |lw(t, )|l 12 (ary = 0, which
implies that w — 0 pomtvvlse Given that w = X — O, we have limy oo X(¢,) —
O(t,-) = 0. Let limy_, L(t) = L and lim;_,o, O(¢,-) = O(-), which implies that
X — © pointwise.

Now, from the above we have lim;_, . ||p(t, -)—p*OC:)HLz([O’L(t)]) = limy 00 ||p(E, ) —
p o X(t,)+p* OX( )= 00|l 20,0t < limyseo [|p(E, ) —p* 0 X (2, )| 12 [OL(t)])-i-
|lp* o X(t,-) — p* o G)||Lz (o, L(t)]l = 0 (this follows from the assumption that p* is
Lipschitz, since |[p* o X — p* 0 O||z2 < ¢|X — ©O||p2 for some Lipschitz constant c).
Thus, we have p —72 p* 0 ©.

Now, we are 1nterested in the limit density distribution p = p* 0 ©, and by the
definition of © we have O (z fo p. We now prove that this limit (5, ©) is unique, and
that (p, ©) = (p*, ©%). From the definition of ©, we get Céi)( ) = p(z) = p*(6(x)) >0,
VO(x) € [0,1]. We therefore have:

6(x) B
o= [ o) s,
0
Recall from the definition of p* and (7) that p* o ©*(z) = p*(z), and d%@*(:z:) =

p*(x) = p* o ©*(x), which implies that % = p*(0*) > 0, where 0* = ©*(z). There-
14
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536 fore:

o (@) 1
537 = / (p*(0))"" db.
538 0

539  From the above two equations, we get:

O(x) . ©*(z) .
540 / (p*(0))"" do = / (p*(8))" b,
5 0 0

542 for all z, and since p* is strictly positive, it implies that © = ©*, and we obtain
513 p=p* 00O = p*oO* = p*. And we know that p =2 p* 0O = p* 0 O* = p*. In
544 other words, p converges to p* in the L? norm. Moreover, since X — ©* pointwise,
545 from (14) we have limy_,o0 0,0 = limiyoo p — p* 0 X = limy00 p — p*, therefore
546 limys o0 [|020] 22(j0,L(#))) = 0- Now, from the smoothness of v, we have:

547 tlggo lv(t, z)| < tlggo lv(¢,0)] —l—/o |0,v| < tlggo [v(t,0)| + v/ L(t)[|0zv]| L2((0,.t))) = O-

549 Thus, lim;_,o p(t, ) — p*(z) = lim;— v(t,2) = 0 pointwise, that is, p — p* point-
550 wise. Therefore, for the PDE system (13), with control laws (14) and (15), we have
551 p— p* and X — O* (pointwise). ad
552 4.2.1. Physical interpretation of the density control law. For a physical
553 interpretation of the control law, we first rewrite some of the terms in a suitable form.
554  From (13), we know that:

1 X X X
555 ~0y Ou _9X + 09, X = d—
556 p p ot dt

557  The second term in the expression for d,v in the law (14) can thus be rewritten as:

dxp* <8IX> 1 LdX 1 dp*
559 p(p+p*oX) p

(p+poX) dt  (p+p oX) dt’

560 Now, from above and (14), we obtain:

561 (17 v(t,x :/ —p*oX —/ S
,:(;2 (a7) (&) 0 (p—p ) o (p+proX) dt

563  Equation (17) gives the velocity of the agent at x at time ¢. Now, to interpret it,
564  we first consider the case where the pseudo-localization error is zero, that is, when
565 X = ©*. This would imply that p* o X = p*0©O* = p*, ‘% = % = 0, and we obtain:

566 (18) v(t,x) = /Ol(p —p").

568 The term [ (p—p*) = [, p— [ p* is the difference between the number of agents in
69 the interval [0, z] and the desired number of agents in [0, z]. If the term is positive, it
70 implies that there are more than the desired number of agents in [0, 2] and the control
71 law essentially exerts a pressure on the agent to move right thereby trying to reduce
72 the concentration of agents in the interval [0,z], and, vice versa, when the term is
73 negative. This eventually accomplishes the desired distribution of agents over a given

15
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interval. This would be the physical interpretation of the control law for the case
where the pseudo-localization error is zero (that is, the agents have full information
of their positions).

However, in the transient case when the agents do not possess full information
of their positions and are implementing the pseudo-localization algorithm for that
purpose, the control law requires a correction term that accounts for the fact that the
transient pseudo coordinates X (¢,x) cannot be completely relied upon. This is what

the second term [ md{% in (17) corrects for. When this term is positive, that
is, fow (;;Tl*ox)%* > 0, it roughly implies that the “estimate” of the desired number

of agents in the interval [0, 2] is increasing (indicating that an increase in the concen-
tration of agents in [0, z] is desirable), and the term essentially reduces the “rightward
pressure” on the agent (note that this term will have a negative contribution to the
velocity (17)).

4.3. Discrete implementation. In this section, we present a scheme to com-
pute p* (the transformed desired density profile) and a consistent discretization scheme
for the distributed control law. We follow that up with a discussion on the convergence
of the discretized system and a pseudo-code for the implementation.

4.3.1. On the computation of p*. In this subsection, we provide a means of
computing p* from a given p* via interpolation. Let the desired domain M* = [0, L*]
be discretized uniformly to obtain M = {0 = z1,..., 2, = L*} such that x;—z;_; =
h (constant step-size). Note that m is the number of interpolation points, not equal
to the number of agents. The desired density p* : [0, L*] — Rs¢ is known, and we
compute the value of p* on M} to get p*(z1,...,2m) = (p},...,p%,). We also have
O*(x) = fom p*du, for all z € [0, L*]. Now, computing the integral with respect to the
Dirac measure for the set M, we obtain ©%(x1,...,zy) = (05,...,05,), where 67 =0
and 0} = %Z?Zl(p;‘f_l—&—p;f)m fork=2,...,m (notethat 0 =07 <05 < ... <6 <1
and limy, 0 0}, = ©*(L*) = 1). Now, the value of the function p* at any X € [0, 1] can
be now obtained from the relation p*(6;) = pj, for k = 1,...,m, by an appropriate
interpolation.

o
(T1,. ey Tyn) 0r,...,0%)

4.3.2. Discrete control law. A discretized pseudo-localization algorithm is
given by (12). We now discretize (14) to obtain an implementable control law for a
finite number of agents ¢ € S, and a numerical simulation of this law is later presented
in Section 6.

Let ¢ € S\ {l,r}. First note that d,v = (Jyv) (0:0) = (Ogv) p

0=0(x) 0=0(x)
(where v = v(©(z))). Using a consistent backward differencing approximation, and
recalling that Af = e, we can write:
Vi — Vi—1 Vi = Vi—1

(02v); = p; Ad = pPi c , 1€S8

where p; is agent ¢’s density measurement.
16
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From Section 4.1, recall the consistent finite-difference approximation:

1 0. X 1
,81 ( ) ~ e—g(Xi_l — 2Xz +X¢+1).

With k = i, from (14) and the above equation, we obtain the law for agent i as:

Vi = Vi—1 +

pi —P"(Xi) 2K (p*(Xz‘+1) —p*(Xi—1))
(19) 2kp; pi(pi +p*(X;))

Xi+1 - X’i—l
X (Xi—1 —2X; + Xit1)

with v; = 0. The computation in v can be implemented by propagating from the
leftmost agent to the rightmost agent along a line graph G (with message receipt
acknowledgment). Note that this propagation can alternatively be formulated by
each agent averaging appropriate variables with left and right neighbors, which will
result in a process similar to a finite-time consensus algorithm. Now, the boundary
control (15) is discretized (with 95 = %;B(t))’ with the choice k = * to:

€

Bt +1) = B(t) + kAL2 = B(t) — 26 (B(t) — Xr—1(1)))

20 9
. = 222600 + 5%, (0)

4.3.3. On the convergence of the discrete system. The discretized pseudo-
localization algorithm (12) with the boundary control law (15), can be rewritten as:

(21) X(t+1) = X(t) — %LX(t) +ult),

where X (t) = (X;(t),...,X,(t)), L is the Laplacian of the line graph Gj;n. and the
input u(t) = (0,...,0,5(2— B(t))). This discretized system is stable and we thereby
have that the discretized pseudo-localization algorithm is consistent and stable. Thus,
by the Lax Equivalence Theorem [25], the solution of (21) converges to the solution
of (10) with the boundary control (15) as N — co. Due to the nonlinear nature of
the discrete implementation of the equation in p, we are only certain that we have a
consistent discrete implementation in this case (no similar convergence theorem exists
for discrete approximations of nonlinear PDEs.)

17
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Algorithm 1 Self-organization algorithm for 1D environments

1: Input: p*, K (number of iterations), At (time step)

2: Requires:

3:  Offline computation of p* as outlined in Section 4.3.1

4:  Initialization X;(0) = Xo;, v; =0

5:  Leftmost and rightmost agents, [, , resp., are aware they are at boundary
6: for k:=1to K do

7 if i =1 then

8: agent [ holds onto X;(k) = 0 and v;(k) =0

9: else if agent i € {I+1,...,7r — 1} then

10: agent i receives X,;_1(k) and X;11(k) from its left and right neighbors
11: agent ¢ implements the update (12)

12: else if ¢ = r then

13: agent r receives X,._1(k) from its left neighbor

14: agent r implements the update (20)

15: for i := 1 tor do

16: agent i computes velocity v; from (19)

17: agent ¢ moves to x;(k + 1) = x;(k) + v; (k) At

5. Self-organization in two dimensions. In this section, we present the two-
dimensional self-organization problem. Although our approach to the 2D problem is
fundamentally similar to the 1D case, we encounter a problem in the two-dimensional
case that did not require consideration in one dimension, and it is the need to control
the shape of the spatial domain in which the agents are distributed. We overcome
this problem by controlling the shape of the domain with the agents on the boundary,
while controlling the density distribution of the agents in the interior.

Let M : R = R? be a smooth one-parameter family of bounded open subsets
of R?, such that M(t) is the spatial domain in which the agents are distributed at
time ¢ > 0. Let p: R x R? — R>q be the spatial density function with support M (t)
for all t > 0; that is, p(t,z) > 0, Vo € M(t), and t > 0. Without loss of generality,
we shift the origin to a point on the boundary of the family of domains, such that
(0,0) € OM(t), for all t. Let p* : M* — Ry be the desired density distribution,
where M* is the target spatial domain. From here on, we view M as a one-parameter
family of compact 2-submanifolds with boundary of R2. Just as in the 1D case, the
agents do no have access to their positions but know the true z- and y-directions.

In what follows we present our strategy to solve this problem, which we divide
into three stages for simplicity of presentation and analysis. In the first stage, the
agents converge to the target spatial domain M™* with the boundary agents controlling
the shape of the domain. In stage two, the agents implement the pseudo-localization
algorithm to compute the coordinate transformation. In the third stage, the boundary
agents remain stationary and the agents in the interior converge to the desired density
distribution. This simplification is performed under the assumption that, once the
agents have localized themselves at a given time, they can accurately update this in-
formation by integrating their (noiseless) velocity inputs. Noisy measurements would
require that these phases are rerun with some frequency; e.g. using fast and slow time
scales as described in Section 3.

5.1. Pseudo-localization algorithm for boundary agents. To begin with,
we propose a pseudo-localization algorithm for the boundary agents which allows for

18

This manuscript is for review purposes only.



668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

their control in the first stage. To do this, we assume that the agents have a boundary
detection capability (can approximate the normal to the boundary), the ability to
communicate with neighbors immediately on either side along the boundary curve,
and can measure the density of boundary agents.

Let My C R? be a compact 2-manifold with boundary My and let (0,0) € M.
To localize themselves, the agents on dM, implement the distributed 1D pseudo-
localization algorithm presented in Section 4.1. This yields a parametrization of the
boundary I' : My — [0,1), with I'(0,0) = 0, such that the closed curve which is
the boundary 9Mj is identified with the interval [0,1). We have that, for v € [0, 1),
I'~(y) € OMy. For v € [0,1), let s(y) be the arc length of the curve dM, from
the origin, such that s(0) = 0 and lim,_; s(y) = [. We assume that the boundary
agents have access to the unit outward normal n(y) to the boundary, and thus the
unit tangent s(7y).

Let q : [0, l) — R< o denote the normalized density of agents on the boundary, such

that we have fo s)ds = 1. Now the 1D pseudo-localization algorithm of Section 4.1

serves to provide a 2D boundary pseudo-localization as follows. Note that j—fy = ﬁ,
and (dz,dy) = sds, which implies (dz,dy) = ﬁs(’y)dv Therefore we get the
position of the boundary agent at v, (z(7),y(7)), as (z(v) fo q(v )d7,
and the arc-length s(vy fo G d’y, which is discretized by a con51stent scheme to
obtain:

Sk+1 .
(22) (zi,y:) = A Z (% qu) , for i € 9My,

and we recall that the agents have access to ¢ and s. The computation of (z;,y;)
can be implemented by propagating from the agent with v; = 0 along the boundary
agents in the direction as ; — 1, along a line graph Gi,e (with message receipt
acknowledgment). Note that this propagation can alternatively be formulated by
each agent averaging appropriate variables with left and right neighbors, which will
result in a process similar to a finite-time consensus algorithm.

This way, the boundary agents are localized at time ¢ = 0, and they update their
position estimates using their velocities, for ¢ > 0.

5.2. Pseudo-localization algorithm in two dimensions. In this subsection,
we present the pseudo-localization algorithm for the agents in the interior of the spatial
domain. We first describe the idea of the coordinate transformation (diffeomorphism)
we employ and construct a PDE that converges asymptotically to this diffeomorphism.
We then discretize the PDE to obtain the distributed pseudo-localization algorithm.

The main idea is to employ harmonic maps to construct a coordinate trans-
formation or diffeomorphism from the spatial domain of the swarm onto the unit
disk. We begin the construction with the static case, where the agents are station-
ary. Let M C R? be a compact, static 2-manifold with boundary and N = {(z,y) €
R?| (z — 1)2 + y? < 1} be the unit disk. The manifolds M and N are both equipped
with a Euclidean metric g = h = ¢.

First, we define a mapping for the boundary of M. Let I' : M — [0,1) be a
parametrization of the boundary of M, as outlined in Section 5.1. Let £ : M — N be
any diffeomorphism that takes the following form on the boundary of M:

(23) E7H(7)) = (1 = cos(2m9),sin(2m)), v €[0,1),
19
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and we know that T 71[0,1) = OM.

Now, from Lemma 2.7, on harmonic diffeomorphisms, there is a unique harmonic
diffeomorphism, ¥ : M — N, such that ¥ = £ on M. We know that, by definition,
the mapping ¥ = (1)1, 12) satisfies:

Aty =0, forre M,
AwQZOa
U =¢ ondM,

(24)

where A is the Laplace operator. Let W* be the corresponding map from the target
domain M* to the unit disk N. Now, we define a function p* : N — Ry by p* =
p* o (*)~1 the image of the desired spatial density distribution on the unit disk,
which is computed offline and is broadcasted to the agents prior to the beginning of
the self-organization process. We later use p* to derive the distributed control law
which the agents implement.

We now construct a PDE that asymptotically converges to the harmonic diffeo-
morphism, which we then discretize to obtain a distributed pseudo-localization algo-
rithm. We use the heat flow equation as the basis to define the pseudo-localization
algorithm, which yields a harmonic map as its asymptotically stable steady-state so-
lution. We begin by setting up the system for a stationary swarm, for which the
spatial domain is fixed.

Let M C R? be a compact 2-manifold with boundary, N be the unit disk of R?,
and R = (X,Y): M — N. The heat flow equation is given by:

hX =AX, forr € M,
(25) QY = AY,
R—¢ on dM.

The heat flow equation has been studied extensively in the literature. For well-known
existence and uniqueness results, we refer the reader to [11].

LEMMA 5.1. (Pointwise convergence of the heat flow equation to a har-
monic diffeomorphism). The solutions of the heat flow equation (25) converge
pointwise to the harmonic map satisfying (24), exponentially as t — oo, from any

smooth initial Rg € H*(M) x H*(M).

_ Proof. Let ¥ be the solution to (24), which is a harmonic map by definition. Let
R = R — ¥ be the error where R = (X,Y") is the solution to (25). Subtracting (24)
from (25), we obtain:

X =AX .
{8t " forre M,

8,Y = AY,

R=0, ondM.

(26)
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The Laplace operator A with the Dirichlet boundary condition in (26) is self-adjoint
and has an infinite sequence of eigenvalues 0 < A} < Ag < ..., with the corresponding
eigenfunctions {¢;}52; forming an orthonormal basis of L?(M) (where ¢; € L*(M)
and A¢; = \;¢; for all i, with ¢; = 0 on the boundary) [12]. Let the initial con-
dition be X, = Yoo, ai¢; and Y, = Y1 big; (where a; and b; are constants
for all 7). The solution to (26) is then given by X(t,r) = 3.0, aje”*!¢;(r) and
Y(t,r) =372 bie it (r). Since \; > 0, for all i, we obtain lim;_,, X(,r) = 0 and
lim; 00 Y (¢, ) = 0, for all r € M. Therefore, lim; ;o R(t,r) = ¥(r), for all r € M,
and the convergence is exponential. ]

We now have a PDE that converges to the diffeomorphism given by (24) for the
stationary case (agents in the swarm are at rest). For the dynamic case, and to
describe the algorithm while the agents are in motion, we modify (25) as follows. Let
R = (X,Y):R xR? — R. We are only interested in the restriction to M(t), R ),
at any time ¢, so we drop the restriction and just identify R = R, M) Using the

relation % = 0;X + VX - v, where v is a velocity field, we obtain:

{8tX =AX-VX-v, for r € M(t),

Y =AY — VY -v,
R=¢, ondM(t).

(27)

We now discretize (27) to derive the distributed pseudo-localization algorithm. Now,
we have p: R x R? — Rs( with support M (¢), the density distribution of the swarm
on the domain M (t). We view the swarm as a discrete approximation of the domain
M (t) with density p, and the PDE (27) as approximated by a distributed algorithm
implemented by the swarm.

Here, we propose a candidate distributed algorithm, which would yield the heat
flow equation via a functional approximation. Our candidate algorithm is a time-
varying weighted Laplacian-based distributed algorithm, owing to the connection be-
tween the graph Laplacian and the manifold Laplacian [4]:

(28) Xi(t+1) =X+ D wy(t)(X;(1) — Xi(h),
JEN(t)

and a similar equation for Y. We show how to derive next the values for the weights
w;;(t) € R, for all t. First, the set of neighbors, j € N;(t), of i at time ¢, are the spatial
neighbors of i in M (t), that is, N;(t) = {j € S| |lrj(t) —ri(t)|| < €} = Be(r;(t)). Using
X;t+1) - X;(t) = %51&, for a small dt, we make use of a functional approximation
of (28):

dx
£ 5t =

(29) 7

[ wltrs)(X(ts) - X(tr) plt.s)dn

Be(ri(t))

where dv = p dp is a density-dependent measure on the manifold, and the weighting
function w satisfies w(t,r;(t),r;(t)) = w;;(t), for all 4,5 € S. We note that the
summation term in (28) is a special form of the integral in (29) with a Dirac measure
dv supported on the set {r1(¢),...,rn(t)} at time ¢. Now, with the choice w(t,r;,s) =
m and for very small ¢ (making O(e®) terms negligible), (29) reduces to:

%(575 =aAX,
dt
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where a = S5 eiy (8 = Ti(t)) - (s — ri(t))dp is a constant. Now, with the choice
0t = a, we obtain:

dX 0X
—_ = VX = AX
i~ VY ’
which is the PDE (27). Let d(t,ri(t)) = [5 ) P(t,8)dp and di(t) = |Ni(t)], for

i € S. Substituting w;;(t) = w(t,r;(t),r;(t)) = " (r‘(t)tp(tg)du = d(t,rlj(t)) ~ ﬁ,

in (28), we get the distributed pseudo-localization algorithm for the agents in the
interior of the swarm to be:

X+ ) =X+ Y (50 - Xilo)
(30) JEN(L) 13
) =Y+ 3 00 -Yi)
JENi()

For the agents on the boundary OM (t), we have:
R; = (X;,Y;) =&,

where & = &(r;(t)), for r;(t) € OM(t). Note that the discretization scheme is consis-
tent, in that as the number of agents N — oo, the discrete equation (30) converges to
the PDE (27). In this way, from (30), the pseudo-localization algorithm is a Laplacian-
based distributed algorithm, with a time-varying weighted graph Laplacian.

5.3. Distributed density control law and analysis. In this section, we de-
rive the distributed feedback control law to converge to the desired density distribution
over the target domain in the two-dimensional case. The swarm dynamics are given
by:

31) dp=—V-(pv), forre M(t),
Or =v, on IM(t).

Assumption 5.2. (Well-posedness of the PDE system). We assume that (31)
is well-posed, and that its solution p(t,-) is sufficiently smooth and belongs to the
Sobolev space H(M(t)), for all t € Rxg.

In what follows, we describe the control strategy based on three different stages.

5.3.1. Stage 1. In this stage, the objective is for the swarm to converge to the
target spatial domain M*.

Let r* : [0,1] — OM™* be the closed curve describing the desired boundary. Let
e(y) = r(y) — r*(y) be the position error of agent v on the boundary, where r(y)
is the actual position of agent v computed as presented in Section 5.1. We define a
distributed control law for swarm motion as follows:

(32) {vv” for r € M(t),

Ov=—e—v, ondM().
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THEOREM 5.3. (Convergence to the desired spatial domain). Under the
well-posedness Assumption 5.2, the domain M(t) of the system (31), with the dis-
tributed control law (32) converges to the target spatial domain M* as t — oo, from
any initial domain My with smooth boundary.

Proof. We consider an energy functional E given by:

1 1
E:f/ |e\2+7/ V2.
2 Jonmt 2 Jonmt

Its time derivative, E, using (32), is given by:

Clearly, E < 0, and |v(t,-)] € H'(U;M(t)), for all t. By Lemma 2.5, the Rellich-
Kondrachov Compactness theorem, H'(U; M (t)) is compactly contained in the space
L?*(U;M(¢)) and by the LaSalle Invariance Principle, Lemma 2.6, we have that the
solutions to (31) with the control law (32) converge to the largest invariant subset
of E~1(0), which satisfies:

Jin [V [l 22 o)) = 0,

tlggo Ol[vIll2oreey) = t1—1>I<r>lo aM(t) v Ov=0.

The set E‘l(O) is characterized by the first equality above and the second equality
is further satisfied by the invariant subset of £~1(0). We know from (32) that d,v =
—e—v on OM (t), which upon multiplying on both sides by v, integrating over dM ()
and applying the previous equality on the integral of v-9;v, yields lim¢_, o [, om) &V =
0. Now, we have |0;v|? = |e|? + |v|? + 2e - v, which on integrating over OM (¢) yields
limg oo [[10:V ||| 2(on (1)) = limioo [||€]l| L2 (anr(e))- By multiplying 0;v = —e — v on
both sides by 0;v, integrating over M (t), and using the Cauchy-Schwarz inequality,
we obtain:

Jim 118:v 1122 (o) = Jm — oo e dyv < lim oo le[|Oy v

< Jim |[[elll 2 @ae (o) 110:v Il L2 @nr (1)) = Jim 10122 (a1 e))

In this way, the Cauchy-Schwarz inequality becomes an equality, which implies that
limy 00 fBM(t) [le]|0sv] — (—e) - Oyv] = 0 (since the integrand is non-negative and its
integral is zero, it is zero almost everywhere), thus lim;_, o, 9;v = — lim;_,, € almost
everywhere (a.e.) on the boundary, and, in turn, implies that lim; ,,, v = 0 a.e. on
the boundary (since ;v = —e — v and lim;_, o 0;v = — lim;_, €). From here, and
owing to the Invariance Principle, we have lim;_,,, 0;v = 0 = lim;_,, € a.e. on the
boundary. Thus, we have that lim;_,, M (t) = M*. 1]

5.3.2. Stage 2. Here, the agents in the swarm implement the pseudo-localization
algorithm presented in Section 5.2. Since the agents are distributed across the target
spatial domain M*, implementing the pseudo-localization algorithm yields the coordi-
nate transformation U* characteristic of the domain M*. We therefore have 9; ¥* = 0,
which implies that % = 00" + V(U*)v = V(T*)v, which will be used in Stage 3.
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5.3.3. Stage 3. In this stage, the boundary agents of the swarm remain station-
ary and interior agents converge to the desired density distribution.
Consider the distributed control law, defined as follows for all time ¢:

{il‘t, =—pV(p—p*o¥*)+ (v -V)v -, forreZ\QJ*7

(33)
v =0, on OM*,

where ‘fj—;’ at r € M is the acceleration of the agent at r, the control input. Using the
relation & = 8, + v - V, it follows from (33) that 9,v = —pV(p — p* o ¥*) — v.

THEOREM 5.4. (Convergence to the desired density). The solutions p(t,-)
to (31) for the fized domain M*, under the distributed control law (33) and the well-
posedness Assumption 5.2, converge to the desired density distribution p* a.e. ast —
00, from any smooth initial condition pg.

Proof. We consider an energy functional E given by:

1 1
J o % \I/*2 - 2.
Q/M*Ip pro |+2/*\V|

Using Corollary 2.3, to compute the derivative of energy functionals, we obtain E
(letting V = (0x,0y)) as follows:

E= Cprogr) (PP 0¥
G (dt dt

+/ V- OV

_Lodury 1
=—/ (p—p*oll’*)<pV~V+Vp*- )+/ lp=p" o WPV v
. dt 2 -

—|—/ VOV

1 _ A\
— 5 [ G wevy- [ pepewwr To [ v,

1
+f/ lp—p o U*PV - v
2 Jus-

dt

where, to obtain the third equality, we expand the square |p — p* o U*|2 in the second
integral of the second equality. Since v =0 on dM* and from Section 5.3.2, we have
49 = V(¥*)v, we obtain:

1

Ezi/ V(pzf(p*o\ll*)Q)ov—/ (pfp*o\Il*)?p*-(V\If*v)Jr/ V- Opv.

We have Vp*VU¥* = V(p* o ¥*), and V(p? — (p* o ¥*)2) = (p — p* o U*)V(p + p* o
U*) + (p+ p* o ¥*)V(p — p* o ¥*). Thus, we get:

.1 1
E:§/ (p+p*0\11*)V(p—p*O‘I/*)~V+§/ (p=p 0¥ )V(p+p ol¥’) v

—/ (p—p*o\I/*)V(p*o\Il*)-v—i—/ V- OV

]\/ *
We now have:

-1
E=§/ (p+p oW )V(p—p o¥”) v
1
+§/ (p—p*o\I/*)V(p—p*o\IJ*)-v—l—/ v Ov.
24
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We therefore get:

E= pV(pfp*o‘Il*)-qu/ v~8tv:/ v (pV(p—p o U*)+ V).
M* * *

From (33), we have 0;v = —pV(p — p* o ¥*) — v, and we obtain:

E:—/ [v[2.

Clearly, E < 0, and p(t,.) € H'(M*) for all t. By Lemma 2.5, the Rellich-Kondrachov
Compactness theorem, H'(M*) is compactly contained in L?(M*), and by the Invari-
ance Principle, Lemma 2.6, we have that the solution to (31) converges to the largest
invariant subset of £~1(0), which satisfies:

I1v[llz2(ary = 0,

(34) 1
SNy = [ veaw =0
M*

The set E'_l(O) is characterized by the first equality above and the second equality is
further satisfied by the invariant subset of E~1(0). We know from (33) that

(35) v =—pV(p—p oT") —v,

which substituted in (34) yields [,,. pv - V(p — p* 0 ¥*) = 0. Now, from (35), we
obtain H|8tv|||2LQ(M*) = [ 1PV (p=p* 0 U*) 2+ [ [VIP+2 [} pv-V(p—p* o T*) =
Jar- 199 (p = p* 0 W) that s, [10vllz2ce) = 116V (p — p* © W)l 2are). By
multiplying (35) by d;v on both sides and applying the Cauchy-Schwarz inequality,
we can also get that |||6tv|||%2(M*) = — [ POV -V(p—p* o W*) < [, 0v]|pV(p—
p*oW)| < 10l 2o |19 (p—p* o) 2 ar-) = I10vII12a -, Thus, the Canchy-
Schwarz inequality is in fact an equality, which implies that 9;v = —pV(p — p* o ¥*)
almost everywhere in M*, which, from (35) implies in turn that v =0 a.e. in M*. It
thus follows that 9;v = 0 and V(p —p* o ¥*) = 0 a.e in M*, and therefore p — p* o U*
is constant a.e. in M*. Using the Poincare-Wirtinger inequality, Lemma 2.4, we
obtain that ||(p — p* o U*) — (p — p* o U*) || < C||V(p — p* o ¥*)|| = 0, where
(p—p*oU*) s = % Jap-(p=p* 0 W*). Since [,,. p= [yp* = [;.p* o U* =1, we
have that (p —p* o U*)- = 0, and therefore ||p —p* o W*|12(pr+) = 0. Now, combined
with the fact that p — p* o U* is constant a.e. in M*, we obtain that p = p* o U*
a.e. in M*. We know that p* o U* = p* and therefore, p = p* o U* = p* which is the
desired density distribution. Thus, lim;_, o, p = p* a.e. in M*. 0

5.3.4. Robustness of the distributed control law. The self-organization
algorithm in 2D has been divided into three stages, where asymptotic convergence is
achieved in each stage (with exponential convergence in the second stage). We now
present a robustness result for convergence in Stage 3 under incomplete convergence
in the preceding stages.

LEMMA 5.5. (Robustness of the control law). For every 6 > 0, there ex-
ist T1, Ty < oo such that when Stages 1 and 2 are terminated at t1 > 11 and ty > Ty
respectively, we have that lim;_,o ||p(t,-) — p*|| L2(a(t1)) < 6.

Proof. In Stage 1, it follows from Theorem 5.3 on the convergence to the desired
spatial domain that lim; ,, M (t) = M*. Then for every ¢; > 0, we have T} < oo, such

25

This manuscript is for review purposes only.



939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

95

Ny

ot

L ) B &) N
~

oo

that dg (M (t), M*) < €1 for all ¢ > T, where dy is the Hausdorff distance between
two sets; see (1). (Note that any appropriate notion of distance can alternatively be
used here.) Let Stage 1 be terminated at ¢; > T3, which implies that the swarm is
distributed across the domain M (t1). In Stage 2, it follows from Lemma 5.1 on the
convergence of the heat flow equation to the harmonic map, that for a domain M (t1),
we have that lim; o R(t,) = Vps¢,) pointwise, where Wy, is the harmonic map
from M(t1) to N (the unit disk). Then, for every €3 > 0, we have a Tp < oo, such
that [[R(Z,) — Vas(ey)lleo < €2 for all t > Th. Let Stage 2 be terminated at ¢ty > Tb,
which implies that the map from the spatial domain to the disk is R(to, ). In Stage 3,
it follows from the arguments in the proof of Theorem 5.4 (on the convergence to the
desired density distribution) that lim; o, p(t,-) = p* o R(te,) a.e. in M(t1) if the
map at the end of Stage 2 is R(t2,-). We characterize the error as lim; o ||p —
P lL2aren)) = [[p™ 0 Rta, ) — p* o W*|[2(as(ty)) = [IP* o R(t2,) — p* 0 War(ry) +p* 0
Unre) =P oV L2 (ar(er)) < IIp*oR(t2, ) = p* o Waseny 2 aren)) +11P* 0 Ware,) —p* 0
U*|| L2 (Mty))- Recall that [|[R(t2, ) = Was(e)]leo < €2, and since p* is Lipschitz, we can
get the bound ||p* o R(t2) —p* o Wars,) L2 (mty)) < 01 = cea (where c is the Lipschitz
constant times the area of M(¢1)). The harmonic map also depends continuously on
its domain [15], which yields the bound [[W ;) — V*||oo < €3, since dg (M (t1), M*) <
€1. Thus, we get another bound |[[p* o Wpsy,y — p* o U*|L2(arry)) < 02 = cez, and
that ||p — p*[|L2(a(t,)) < 01 + d2 = . Therefore, going backwards, for all § > 0, we
can find 77 and T» such that the density error is bounded by d, when the Stages 1
and 2 are terminated at ¢; > 77 and to > T, respectively. 0

5.4. Discrete implementation. In this section, we present consistent schemes
for discrete implementation of the distributed control laws (32) and (35), where the
key aspect is the computation of spatial gradients (of p in Stage 1, and of p, ¥* and
the components of velocity v in Stage 3). The network graph underlying the swarm is
a random geometric graph, where the nodes are distributed according to the density
distribution over the spatial domain. According to this, every agent communicates
with other agents within a disk of given radius (say r) determined by the hardware
capabilities, which reduces to the graph having an edge between two nodes if and
only if the nodes are separated by a distance less than r. We recall the earlier stated
assumption that the agents know the true z- and y-directions.

5.4.1. On the computation of p*. We first begin with an approach to compute
offline the map p* via interpolation. Let the desired domain M* € R? be discretized
into a uniform grid to obtain M} = {r1,...,r,,} (the centers of finite elements, where
ri = (zk,yr)). The desired density p* : M* — R is known, and we compute the
value of p* on M} to get p*(r1,...,rwm) = (pi,...,pL,). We also have ¥*(z,y) =
(X*,Y*) € N, for all (z,y) € M*. Now, computing the integral with respect to the

Dirac measure for the set M}, we obtain ¥*(ry,...,ry) = (¥],...,¥% ). The value of
the function p* at any (X,Y") € N can be obtained from the relation p*(07,..., U% ) =
p*(r1,...,ry) for k =1,...,m by an appropriate interpolation.

(PT, - pm) =P (¥, W)
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5.4.2. Discrete control law. As stated earlier, for the discrete implementation
of the distributed control laws (32) and (35), the key aspect is the computation of
spatial gradients (of p in Stage 1, and of p, ¥* and the components of velocity v in
Stage 3). In the subsequent sections we present two alternative, consistent schemes
for computing the spatial gradient (of any smooth function, with the above being the
ones of interest), one using the Jacobian of the harmonic map and the other without
it.

Computing the Jacobian of the harmonic map. Let J(r) = VU(r) be the
(non-singular) Jacobian of the harmonic diffeomorphism ¥ : M — N. When the
steady-state is reached in the pseudo-localization algorithm (30) (i.e., X;(t + 1) =
X;(t) =% and Y;(t + 1) = Y;(t) = %), we have, Vi € S:

. 1 i .
> 5 (wﬂ v =0, Y —@i-vi)=0
]GN JjEN; J

where i is the index of the agent located at r € M and N; is the set of agents in a
disk-shaped neighborhood B.(r) of area € centered at r. Rewriting the above, we get,
VieS:

L
(36) gio e m e deend v
1=~ 1 2= T— 1

Zje/\/i d; Z]EN d;

We assume that the agents have the capability in their hardware to perturb the disk of
communication B¢(r) (by moving an antenna, for instance). The Jacobian J = V¥
is computed through perturbations to N; (i.e., the neighborhood B.(r)) and using
consistent discrete approximations:

Y1(r + dzer) — Y1 (r)
Sx ’

wl (I‘ + 5ye2) — ’L[)l (I‘)
oy

and similarly for 15. Now, 11 (r + dxe1) is computed as in (36) for N%, the set of
agents in B(r + dzep) and ¢ (r + dyes) from B(r + dyes).

3:,:1/11 ~

aywl ~

i

Computing the spatial gradient of a smooth function using the Jacobian
of U. Let V = (0;,0,) and V = (dy,,0y,), where ¥ = (¢1,12). We have 9, =
(021)0p, + (0512) Oy, and 9y = (9y11)0y, + (Oyth2)dy,. Therefore, V.= JTV. For a
smooth function f : M — R, we have, Vf = JTVf, and the agents can numerically
compute V by:

af af Ji—fi fz
(8%) |N|Z wl <6w2> IN\E\;

where ¢ is the index of the agent located at r € M and N; is the set of agents in a
ball B.(r).

Computing the spatial gradient of a smooth function without the Ja-
cobian of W. In the absence of a Jacobian estimate, we use the following alternative
method for computing an approximate spatial gradient estimate of a smooth function.
This is used in Stage 1 of the self-organization process.

Let f(r) be the mean value of f over a ball B,(r):

_ 1 1
fr) =1 /Bem fin~ e S

tjen;
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We have:

19f 1 f(r+dzer)— f(z) _ 1 s.rvsven T — [ ) Fdu
€

cdr o € ox
L Ut s,
€ BE(r) (53’)

Nl/ f g — (21
NE Bg(r)(?a: B= ox ’

10F _ 1J(c+dyes) — f(a) <8f>

Similarly,

coy oy “\ oy

In all, for any scalar function f, each agent can use the approximation

7 (V5 ~ ((gf)(ggj)) He]

to estimate of the gradient V f.

5.4.3. On the convergence of the discrete system. We have noted earlier
that the pseudo-localization algorithm (30) satisfies the consistency condition in that
as N — oo, Equation (30) converges to the PDE (27). The pseudo-localization
algorithm is also essentially a weighted Laplacian-based distributed algorithm that is
stable. Thus, by the Lax Equivalence theorem [25], the solution of (30) converges to
the solution of (27) as N — oo. However, for the distributed control laws in Stages 1-
3, we are only able to provide consistent discretization schemes. The dynamics of the
swarm (31) with the control laws (32) and (33) are nonlinear for which is no equivalent
convergence theorem. Further analysis to determine convergence is required, which
falls out the scope of this present work.

6. Numerical simulations. In this section, we present numerical simulations
of swarm self-organization, that is, of the control laws presented in Sections 4.2 and
of Section 5.3.

6.1. Self-organization in one dimension. In the simulation of the 1D case,
we consider a swarm of N = 10000 agents, the desired density distribution is given by
p*(z) = asin(z) + b, where a = 1 — - and b= %, = € [0, Z]. We use a kernel-based
method to approximate the continuous density function, which is given by:

plt,r) =Y K (W) ’

i€S

where

K(z) =

g, for0<wx <1,
0, forx>1,

is a flat kernel and ¢4 € R is a constant [8]. We discretize the spatial domain
with Az = 0.001 units, and use an adaptive time step. The self-organization begins
from an arbitrary initial density distribution. Figure 2 shows the initial density dis-
tribution, an intermediate distribution and the final distribution. We observe that
there is convergence to the desired density distribution, even with noisy density mea-
surements.
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Algorithm 2 Self-organization algorithm for 2D environments

1: Input: M*, p* and ki, ko, K (number of iterations for each stage), At (time

step)
2: Requires:
3:  Offline computation of p* as outlined in Section 5.4.1
4:  Boundary agents are aware of being at boundary or interior of domain, can
5: communicate with others along the boundary, can approximate the normal
6: to the boundary, and can measure density of boundary agents,
7:  Agents have knowledge of a common orientation of a reference frame
8: Initialize: r; (Agent positions), v; = 0 (Agent velocities)
9: Boundary agents localize as outlined in Section 5.1
10: Stage 1:
11: for k:=1 to k1 do
12: if agent ¢ is at the interior of domain then
13: compute v;(k) = —%(k) from (32), with (Vp);(k) as in (37),
14: move r;(k+ 1) = r;(k) + v;(k)At
15: else if agent 7 is at the boundary of domain then
16: compute v;(k+1) = v;(k) — (r;(k) —rf (k) + v;(k)) At from (32), and move

17: Stage 2:
18: Boundary agents map themselves onto unit circle according to (23)
19: for k :=1 to ko do

20: for agent ¢ in the interior do

21: compute X;(k + 1), Y;(k + 1) according to (30)

22: Stage 3:

23: for k:=1to K do

24: for agent 4 in the interior do

25: compute v;(k+1) = v;(k)+(—p;(k)(V(p—p* o ¥*)); (k) + (vi(k)-V)vi(k)—
v;(k))At from (33), with (V(p — p* o ¥*));(k) as in (37)

26: update r;(k + 1) = r;(k) + v;(k)At

6.2. Self-organization in two dimensions. In the simulation of the 2D case,
we first present in Figure 3 the evolution of the boundary of the swarm in Stage 1,
where the swarm converges to the target spatial domain M™ from an initial spatial
domain. The target spatial domain, a circle of radius 0.5 units, given by M* =
{(z,y) € R?|(x — 0.6)? + y? < 0.25}, with the desired density distribution p* given

by p*(z,y) = W. We present in Figures 4 and 5 the result of imple-

mentation of the pseudo-localization algorithm with the steady state distributions
of U* = (¢f,43) respectively. We note that the steady state distribution ¥* as a
function of the spatial coordinates (z,y) in this case is linear. Next, we focus on
Stage 3 of the self-organization process, where the agents already distributed over the
target spatial domain, converge to the desired density distribution. The initial density
distribution of the swarm is uniform, and the distributed control law of Stage 3 in
Section 5.3, following the discretization scheme outlined in Section 5.4 is implemented.
Figure 6 shows the density distribution at a few intermediate time instants of imple-
mentation and figure 7 shows the spatial density error plot, where e(p) = [} . [p—p* |2
is the spatial density error. The results show convergence as desired.
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Fig. 2: Density p(z) plotted against position z at different instants of time.
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Fig. 3: Evolution of the swarm boundary in Stage 1.

1078 7. Conclusions. In this paper, we considered the problem of self-organization
1079  in multi-agent swarms, in one and two dimensions, respectively. The primary contri-
1080 bution of this paper is the analysis and design of position and index-free distributed
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Fig. 4: Steady-state distribution of ¢7.  Fig. 5: Steady-state distribution of 3.

Fig. 6: Evolution of density distribution in Stage 3.

control laws for swarm self-organization for a large class of configurations. This was
accomplished through the introduction of a distributed pseudo-localization algorithm
that the agents implement to find their position identifiers, which then use in their
control laws. The validation of the results for more general non-simply connected do-
mains will be considered in the future. An extension to this work will involve the char-
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Fig. 7: Spatial density error e(p) = [},. [p — p*|? vs time,

acterization of constraints on the local density function to capture finite robot sizes
and collision avoidance constraints, as well as accounting for possible non-holonomic
constraints on the motion of the robots.
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