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ABSTRACT
Traffic congestion is a major source of delays in modern road networks. Motivated
by this, we propose two distributed algorithms to reduce delays: a dynamic lane
reversal algorithm and a rerouting algorithm. When there is a density imbalance
on a road, time can be saved by reallocating lanes from the less dense side to the
more dense side, which motivates dynamic lane reversal. When a road has greater
density than nearby roads, time can be saved by redirecting flow into the least
congested roads, this motivates dynamic rerouting. Given a communication system
between infrastructure and vehicles on the road, the local state of the network can
be approximated and utilized by the algorithms to minimize travel time. In order
to provide a better fundamental understanding of the system dynamics, we analyze
equilibrium conditions for the system and prove convergence of the lane reversal
algorithm to a critical point. Overall performance is also examined in simulation.
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1. Introduction

Motivation. Congestion is a major source of traffic delays in modern road networks,
but the problem can be mitigated by smarter traffic systems. Significant imbalances
of traffic density in a given road network can arise due to many events, such as when
there is a large flow of vehicles towards an industrial center in the morning, a large
event ends and there is a mass of flow out from large event, or there is an accident
which creates heavy congestion on one side of a road. Modern infrastructure endowed
with new information technology requires no additional space or construction and can
substantially reduce overall traffic delays. Motivated by this, here we investigate the
implementation and benefits of lane reversal and traffic rerouting distributed algo-
rithms that can improve traffic flow.

In particular, recent advances in design, performance, and cost of autonomous vehi-
cles (see Campbell, Egersdedt, How, and Murray (2010)) has fueled a growing interest

This work was supported by NSF-CMMI 1434819.



in Autonomous Intersection Management (AIM), an efficient policy for coordinating
autonomous vehicles using an intersection manager (IM) to safely pass through an
intersection Dresner and Stone (2008). With the help of the AIM policy and vehicle-
to-infrastructure communications, an approximation of the state of traffic can be con-
structed. The IM can then implement more dynamic procedures to reverse one or more
lanes or communicate a new route to some vehicles if traffic delays will be reduced. The
future presence of autonomous vehicles is also important in implementing the actual
lane reversal and vehicle rerouting, as physically moving a barrier to reverse a lane
is a slow process that can take hours, Downey (2008), yet merely indicating a lane’s
direction or a new route for a vehicle is likely to cause driver confusion and increase
risk of accident. With advances in vehicle autonomy, lane reversal and rerouting are
less restricted by physical safety considerations and can be achieved through simple
communication from the traffic signal to the vehicle.

Literature review. Many recent papers have furthered Autonomous Intersection Man-
agement. Batch processing of reservations in AIM to enforce liveness is proposed in
Au, Shahidi, and Stone (2011). An auction-based scheme under AIM is analyzed in
Carlino, Boyles, and Stone (2013). Local information is shared and utilized to minimize
delay time under Greenshield’s traffic model in Wuthishuwong and Traechtler (2013).
Some effort has also recently been put towards solving vehicle routing problems in
modern context. A provably safe distributed solution for coordinating vehicles outside
an intersection is provided in Tallapragada and Cortés (2015). Work has also been
done analyzing traffic evolution over networks. Classical traffic models are examined
in a network setting in Work, Blandin, Tossavainen, and Bayen (2010). Passivity is
used to generalize the network flow control problem in Wen and Arcak (2004). A so-
lution to the problem of assigning freight loads to available carriers given unbalanced
network conditions is found in Abadi, Ioannou, and Dessouky (2015).

Much of the literature concerning lane reversal discusses evacuation procedures in
order to respond effectively to natural disasters, Chiu, Zheng, Villalobos, Peacock,
and Henk (2008), Wang, Wang, Zhang, Ip, and Furata (2012). These papers propose
the solution of lane reversal to accommodate emergency evacuation in a non-dynamic
way. Some works discuss procedures and results for location-specific cases where lane
reversal would be beneficial, Zhou, Livolsi, Miska, Zhang, Wu, and Yang (1993), Xue
and Dong (2000). More recently, some have attempted to further improve results
through dynamic lane reversal. The solution presented in Hausknecht, Au, and Stone
(2011b) requires a centralized computer to find an allocation strategy, with a mini-
mum timestep of one hour. In Meng, Khoo, and Cheu (2014), the authors formulate
a model and present a centralized solution which does not use network dynamics.
In Hausknecht, Au, and Stone (2011a), dynamic lane reversal is implemented in lim-
ited form on a single road and tested in simulation.

Statement of contributions. In this paper we extend the cell transmission model to
characterize the evolution of vehicle density in a road network and the effect of both
lane reversal and rerouting on these dynamics. We establish objective functions with
the goal of minimizing total vehicle time spent on the road, and propose two algo-
rithms. Using lane reversal, we propose a distributed dynamic algorithm to efficiently
calculate and implement an appropriate lane allocation and prove convergence of the
algorithm to a more efficient solution. An important aspect of this work is to provide
a fundamental understanding of the system dynamics. To do so, we analyze the long
term behavior of a road network with balanced lanes, and establish its convergence
to an equilibrium under certain regularity conditions on its sources and sinks. We
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also propose a distributed rerouting algorithm to more efficiently achieve this long-
term equilibrium. We show through simulations performance gains using lane reversal
and rerouting on various initial conditions. This work is an extension of Gravelle and
Mart́ınez (2016), containing the full proof of the main stability theorem, an addi-
tional remark concerning noise in the dynamics, and additional simulation figures and
discussion.

Notation and Nomenclature. The set of real numbers (positive real numbers, integers)
is denoted by R (Z, resp.). Similarly, Rn (Zn) denotes the product space of n copies
of R (Z, resp.). The vector of ones with length n is denoted by 1n. A directed graph
G consists of a set of vertices V and a set of directed edges E, G = (V,E), such that
E ⊂ V × V . Vertex a is an out-neighbor of vertex b if (b, a) ∈ E. Similarly, a is an
in-neighbor of b if (a, b) ∈ E. Vertex a is a neighbor of b if b is an out-neighbor or
in-neighbor of a. The set of out-neighbors (resp. in-neighbors) of a is denoted N out

a

(resp. N in
a ). Matrix A = {aij} satisfies A ∈ sparse(G), for G = (V,E), if aij = 0 when

(i, j) /∈ E. Given a vertex set V , Vr denotes the set of cells contained on road r.

2. Problem Statement

We consider traffic evolving over a road network. Each road consists of one or two sides
for each direction of traffic flow and which have a given number of lanes. In addition,
each side is divided into cells of length L, which are used to describe the evolution of
traffic density, see Figure 1.

We define a directed graph GC = (C,EC) of cells i ∈ C, such that (j, h) ∈ EC if traffic
can flow from cell j to cell h. A side is defined as the set of connected cells bounded
by a source, sink, or an intersection manager (IM). A source (resp. sink) is a special
cell in which traffic only flows out (resp. flows in), while an IM is an intelligent traffic
management system at an intersection of roads. The set of all roads is denoted by R
and the set of neighbors of road r is denoted by Nr, where two roads are neighbors
if they share an intersection. We denote S as the set of all sides, p,−p ∈ S are the
two sides of a road, and n = |C|. The intersection graph GZ = (Z,EZ) consists of
the vertex set Z containing all IMs and edges (z1, z2) ∈ Z if there is exactly one road
connecting intersections z1 and z2 ∈ Z. A cell which flows into a sink is contained in
set B and a cell which receives flow from a source is contained in set B.

Cells

Figure 1. Road divided into cells
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2.1. Traffic Model

The following traffic model is based on the Lighthill-Whitham-Richards Partial Differ-
ential Equation, Lighthill and Whitham (1955) and Richards (1956), to describe the
evolution of vehicle density ρ ∈ R on each side,

∂tρ+ ∂xQ(ρ) = 0. (1)

This equation maintains conservation of mass, and the flow function Q(ρ) is given by

Q(ρ) =

{
vfρ, ρ ≤ ρc,
vfρc

ρjam−ρc (ρjam − ρ), ρ > ρc,
(2)

where ρ ≤ ρc is the condition for free flow, ρ > ρc is the condition for congested flow,
vf is the free flow speed of the vehicles, ρjam is the density at which a traffic jam
occurs, and ρc is the critical density value where maximum flow occurs, see Figure 2.
This model is based on experimental data and is commonly used to model traffic flow,
particularly because it is a simple model that captures the wave behavior of traffic.

Figure 2. Vehicle flow model

The Cell Transmission Model Daganzo (1994) is a discretization of (1) using time
step ∆t and spatial step ∆x, where is assumed that all cells have length L = ∆x.
For convenience, k indexes the discrete time step, with t = t0 + k∆t. For a cell i with
exactly one in-neighbor i − 1 and one out-neighbor i + 1, the density of the cell is
updated according to

ρi(k + 1) = ρi(k) +
∆t

L(`p + up)
(qi−1,i(k)− qi,i+1(k)),

where i is contained on side p of road r, `p is the number of default lanes of side p, ρi(k)
is the density (veh/lane-km) of vehicles on i at time k, qa,b is the flow rate (veh/hr)
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from cell a to cell b, and up(k) ∈ {1− `p, . . . , `−p−1} is the number of additional lanes
on side p. The constraint up + u−p = `p + `−p must hold to keep the total number of
lanes in a road constant, where u−p ∈ {`−p−1, . . . , `p−1} is the number of additional
lanes on side −p. We have

qi−1,i(k) = min{qi−1(k),qi(k)}, (3)

with the piecewise functions qi−1(k) and qi(k) defined as

qi−1(k) =

{
vf (`p + up(k))ρi−1(k), ρi−1(k) ≤ ρc,
vf (`p + up(k))ρc, ρi−1(k) > ρc,

qi(k) =

{
vf (`p + up(k))ρc, ρi(k) ≤ ρc,
vfρc

ρjam−ρc (`p + up(k))(ρjam − ρi(k)), ρi(k) > ρc.

Intuitively, the flow from i − 1 to i is restricted when ρi−1(k) is small or ρi(k) is
large Bretti, Natalini, and Piccoli (2006).

Cells can also be connected to sources or sinks of various strengths, these make up the
boundary to the system. A source or sink is just like another cell but with an effective
density given by

ρi = αiρc, i is a source,

ρi = (1− βi)ρc, i is a sink,

where αi(βi) is the strength of the source (sink), resp.

To model a network of roads at intersections, the flow out of a cell must equal the sum
of flows into other cells. We define a matrix K = {kij} ∈ Rn×n where kij contains the
fraction of vehicles which move from cell i to cell j. For now, we assume K is constant.
If j is the only out-neighbor of i in GC then kij = 1, but if j is one of multiple out-
neighbors, then kij < 1. The flow out of any cell i, based on conservation of mass, is
given by

qout
i (k) =

∑
j∈N out

i

kijqi,j(k), (4)

where N out
i is the set of out-neighbors of i in GC. In this model, intersections are

assumed to be small compared to the length of each cell, so the time spent in the
intersection is negligible. The role of an efficient Autonomous Intersection Management
policy is important in this assumption.

We similarly define

qin
i (k) =

∑
h∈N in

i

khiqh,i(k), (5)
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where N in
i is the set of in-neighbors of i in GC.

The evolution of any cell in the network is given by

ρi(k + 1) = ρi(k) +
∆t

L(`p + up)
(qin
i (k)− qout

i (k)), i ∈ C. (6)

To enable lane reversal, the control input u ∈ Z|R| determines the number of lanes per
road which directly affects that road’s density, see Figures 3 and 4.

Figure 3. Before lane reversal

Figure 4. After lane reversal

Based on conservation of mass, cell i on side p is updated after lane reversal as follows:

ρi(k
+) = ρi(k) · `p + up(k)

`p + up(k+)
,

where up is the control before the update. For analysis purposes we assume that the
change in road density is instantaneous, based on an assumption that vehicles respond
quickly to a lane opening or closing. The clearing time tc, the time it takes for all
vehicles to vacate a lane being reversed, is also assumed to be zero. Lane clearing can
realistically be performed in 15 seconds or less under most traffic conditions in which
a lane clearing occurs, so this assumption is reasonable, Hausknecht et al. (2011a).
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2.2. Problem Formulation

To characterize performance of the system, we define the objective function as the
time spent of each vehicle in the system GC summed over every vehicle, or

W (u) =

N∑
w=1

(
t`w − tew

)
,

where t`w is the time in which vehicle w leaves G through a sink, tew is the time in
which vehicle w enters G through a source, and N is the total number of vehicles that
spent time within the system. The total time spent is inversely proportional to the
total flow rate, so total time can be approximated as

W (u) ≈ N

qavg
∑

p∈S `p
,

≈
kf∑
k=0

(
N∑

i∈C(qin
i (k) + qout

i (k))/2

)
,

where qavg is the average flow rate in G. The average of flow in and out of each cell is
required to account for coupled dynamics.

We define the first control input as the directional lane allocation of each road u ∈ Z|R|,
where up = 1 corresponds to reversing one lane from the default lanes in the direction
of −p to the direction of p in the road r ∈ R. The goal is to minimize W (u) while
satisfying two physical constraints, one which maintains the total number of lanes of a
roadway (the sum of lanes in both directions is constant), and the other which requires
a positive integer number of lanes. This is stated as

Problem 1:

maximize
u∈R|R|

W (u) =

kf∑
k=0

(∑
i∈C

(qin
i (k) + qout

i (k))

)
subject to up ∈ {−`p + 1, . . . , `−p − 1},

u−p ∈ {−`−p + 1, . . . , `p − 1},
up + u−p = `p + `−p, ∀ p,−p ∈ S.

A point u∗ is a critical point for Problem 1 if u∗ satisfies the above constraints and
if W (u∗) ≥ W (u) for all u s.t. ∀ p ∈ S, u satisfies the above constraints and u∗ζ =
uζ , ∀ ζ 6= p.

If vehicles can be redirected through intersections, then K = {kij} ∈ Rn×n is the
control variable, where kij is the proportion of vehicles flowing from cell i to cell j.
Each non-zero value is lower bounded by a value kmin in order to maintain connect-
edness of the graph. Assuming a uniform critical density value in the network and
given boundary conditions, maximum flow is obtained by distributing as much flow as
possible into uncongested lanes. This can be formulated as
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Problem 2:

minimize
K∈Rn×n

W̃ (K) =
∑
i∈C

max{0, ρi(t+ 1)− ρc}

subject to (K1n)i = 1, ∀ i /∈ B,
(K1n)i = 0, ∀ i ∈ B,
K ∈ sparse(GC),

kij ∈ [kmin, 1], ∀ (i, j) ∈ E.

2.3. Approximation of the State

Here, we will use the assumptions employed in Hausknecht et al. (2011a) for an in-
tersection manager (IM) to approximate the state of the traffic on the roads at the
intersection. Vehicles have unique identifiers and transmit a message within D ≈ 300
meters to the IM for a reservation request to cross intersections more efficiently. The
IM at intersection z ∈ Z maintains a counter variable zp for road side p, adding one
to zp when it receives a notification message from a vehicle on road side p and sub-
tracting one from zp whenever a vehicle from road side p with a confirmed reservation
is expected to leave the road and enter the intersection. The state of road side p at
time t is calculated as

ρp(k) =
zp(k)

(`p + up) min{L,D}
. (7)

If L > D then assume that the state of the entire road is equal to the state in
the nearest section. Note, with more sensing than just at intersections, the state of
the roads can be more accurately approximated, so smaller cells can be used. This
approximation is used in both algorithms to determine whether or not travel efficiency
can be improved.

3. Lane Reversal Policy

In this section we provide a distributed Lane Reversal Algorithm together with its
stability properties. The performance of the algorithm is also analyzed in Section 5.

3.1. Lane Reversal Algorithm

Problem 1 is a non-convex, non-smooth optimizal control problem with integer con-
straints. We assume that there is an intersection manager z1 and z2 at both ends of
each road, and that z1 is assigned its control. This IM requires estimates of the road
states from its neighboring IMs and from the neighbors of z2 to construct the complete
local state. These estimates are calculated by counting vehicles in and out of each road
as explained in Section 2.3 and in Equation (7).
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We define Cp = {a ∈ C | a is a cell of p} for p ∈ S, and similarly Cr = Cp ∪ C−p,
where p,−p are the sides of road r ∈ R. Suppose that T (t′) ∈ {1, . . . , T} represents
a clock ticking from 1 to T at each IM synchronously, where ∆t′ << ∆t is a smaller
discrete time step. Each IM updates its assigned roads on specific ticks, which are
given by a schedule Λ(r) ∈ {1, . . . , T}, computed during an initialization phase. As
an example, in the road network in Figure 5 each road with the same number Λ can
update simultaneously. By means of the flag function “to update,” computations are
reduced to cases when changes in the neighboring conditions can lead to non-trivial
updates. When the turn of an IM to update takes place (line 5), then, in order to find
the best control policy for some road r with sides p,−p ∈ S while keeping other roads
fixed, Wr(u+ωr∆r) is maximized over ωr ∈ Ωr in the Lane Reversal Algorithm.
Here,

Wr =

k+η∑
k

∑
a∈Cr∪Nr

(qin
a (k) + qout

a (k)),

where η is the width of the optimization window, note that for large η, accurate
prediction of the local state could require more states than just immediate neighbors.
In addition, Ωr = {−`p + 1, . . . , `−p − 1}η is any sequence of controls and ∆r ∈ Zn
has zeros everywhere except 1 for each component i ∈ Cp and −1 for each component
j ∈ C−p. Since in real road networks most roads have 4 or less lanes, an exhaustive
search is computationally inexpensive in this domain. If a trivial update takes place,
then a new update for neighboring roads is not necessary. This is encoded by setting
the to update function equal to zero, otherwise this function is set equal to one. State
estimates are updated and information on updated controls, states and the to update

function is communicated to neighbors. The algorithm runs until time kf .

3 3

3

3 3

3

1

1

11

1

1

2 2 2

222

4 4 4

444

Figure 5. Schedule of road network

3.2. Stability Analysis of Lane Reversal

We first establish an upper bound on the objective function:
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Algorithm 1: Lane Reversal Algorithm of IM z

1 Initialize time t′ = 0, schedule Λ(r), ∀ r ∈ R;
2 Initialize to update(r) = 1, ∀ r ∈ R;
3 for all r ∈ R with sides p,−p controlled by z and t′ do
4 Update up′ , u−p′ , to update(r′), and ρi′ if messages were received from

neighbors;
5 if to update = 1 and Λ(r) = T (t′) then
6 ω∗r ← argminωr∈Ωr

Wr(u+ ωr∆r);
7 u+

ν ← uν , ∀ ν ∈ R \ {p,−p};
8 u+

p ← up + ω∗r ;

9 u+
−p ← up − ω∗r ;

10 if u+
p = up then

11 to update(r)← 0;
12 else
13 to update(λ)← 1, ∀λ ∈ Nr;
14 to update(r)← 0;

15 end

16 Initiate lane swap, set ρ+
i = ρi · `r+ur

`r+u+
r
, ∀ i ∈ Cp and

ρ+
j = ρj · `r−u

+
r

`r−ur
, ∀ j ∈ C−p;

17 Transmit u+
p , u+

−p, to update(λ)∀λ ∈ Nr, ρ+
i ∀ i ∈ Cp, and ρ+

i ∀ i ∈ C−p
values to neighbors of r;

18 end
19 t′ ← t′ + ∆t′;

20 end

Lemma 3.1. Under the constraints given in Problem 1, the objective function satisfies

W (u) ≤ 2vfρc`n,

at each time step, assuming that `p = `, ∀ p ∈ S. This upper bound is achieved when
roads are lane-balanced (for any path on the network, the number of lanes remains
constant) and ρi = ρc, ∀ i ∈ C. Intuitively, this is the state when flow through each
lane is maximized over the whole network, and there is no congestion formed through
lane merging. �

The proof for this lemma is omitted, as it is simply calculated by maximizing each
cell’s flow.

Lemma 3.2. The Lane Reversal Algorithm converges in finite time to a critical
point u∗ of Problem 1 under the listed constraints. �

Proof. The update u+ is implemented in the Lane Reversal Algorithm by eval-
uating Wr(u) and choosing ωr which maximizes this value. Note that the algorithm
constrains u+

p s.t. u+
p ∈ {1 − `p, . . . , `−p − 1}. Since a local maximizer of Wr(u) also

maximizes W (u) and the algorithm maintains a schedule which is compatible with the
separability of W (no two road neighbors update simultaneously), it is guaranteed that
W (u+) ≥ W (u). In this way, W is a monotonically non-decreasing function through
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the algorithm. Using a discrete-time Lyapunov stability argument with W , asymptotic
convergence to a point u∗ satisfying the constraints of Problem 1 for which W can not
be improved by modifying u∗ entry-wise can be guaranteed. Due to the finite discrete
state space, convergence occurs in finite time.

4. Vehicle Rerouting Policy

In this section, we provide a stability analysis for the road density evolution under
the dynamics (3) to (6), under the assumption of balanced sources and sinks. This
motivates the distributed rerouting algorithm, which is simulated in Section 5. For
this section only, we assume that there is no lane reversal occuring, and that the
number of lanes on each road are equal, so `p + up = `p′ + up′ = `, ∀ p, p′ ∈ S.

4.1. Stability Analysis of Weight-Balanced Traffic Networks

Because one solution to Problem 2 is achieved when as many vehicles are in free
flow as possible, we are interested in finding conditions that guarantee that system
achieves this state naturally. Such fundamental analysis helps gain intuition and a
better understanding of how the system behaves. We find one such sufficient condition
here.

We define α = [α1, . . . , αn]>, where αi ∈ [0, 1] is the strength of the source connected
to cell i (αi = 0 if no source is connected to cell i). Similarly, β = [β1, . . . , βn]> where
βi ∈ [0, 1] is the strength of the sink connected to cell i (βi = 0 if no sink is connected
to cell i). We use two assumptions:

Assumption 4.1 (Critical Density Value). The critical density value is ρc ∈ (0, ρjam2 ).

Assumption 4.2 (Weight Balanced). The graph GC is weight balanced including
boundary conditions, or equivalently, K>1n + α = 1n and K1n + β = 1n.

Assumption 4.3 (Existence of Sources and Sinks). There exists a source and sink
with nonzero strength somewhere in GC.

Note that while these are strong assumptions, the following analysis helps clarify the
overall behavior of the system dynamics. Each assumption is required in the proof of
Theorem 4.4. Assumption 4.1 bounds the critical density value to be between reason-
able values. Assumption 4.2 requires that sinks and sources have specific coefficients to
enable free flow if possible. Assumption 4.3 allows for flow into and out of the system.
Under these conditions, the following result holds.

Theorem 4.4 (Stability to critical density values). Given Assumptions 4.1, 4.2, 4.3,
the dynamics of Equations (3) through (6) and a connected graph GC, any initial
state with ρi(0) ∈ [0, ρjam], ∀ i ∈ C, converges practically to ρc. In other words,

limk→∞ ρ(k) ∈ [(ρc − ε)1n, (ρc + ε)1n], where ε ≤ ∆tvfρc
L . �

Intuitively, this result holds due to the natural dynamics as well as the existence of
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ideal boundary conditions.

Proof. First, we check that ρ∗ = ρc1n is indeed an equilibrium. Combining Equa-
tions (3) to (6) gives

ρi(k + 1) = ρi(k)+

∆t

L`

 ∑
a∈N in

i

kai min{qa(k),qi(k)} −
∑

b∈N out
i

kib min{qi(k),qb(k)}

 .

The first minimum term simplifies to vf `ρc if a is not a source, and αavf `ρc if a is
a source. Similarly, the second minimum term simplifies to vf `ρc if b is not a sink,
and βbvf `ρc if b is a sink. Setting ρi(t+ 1) = ρi(t) to define an equilibrium results in
K>1n+α = K1n+β. This holds given Assumption 4.2, so ρ = ρc1n is an equilibrium.

To prove convergence to this equilibrium, we define a Lyapunov fuction

V (ρ) = min
i∈C

{
vf (ρi − ρc), ρi ≤ ρc,
vfρc

ρjam−ρc (ρc − ρi), ρi > ρc.

This function is inversely proportional to the minimum flow rate in the system, is
minimized at ρ = ρc, and is non-increasing along the dynamics assuming a small
∆t, we will see this by bounding the flow in and flow out of each cell. For some
state ρ, define d = V (ρ)/vf and d = V (ρ)(ρjam − ρc)/(vfρc). Assume for now that

ρc ≤ ρi ≤ ρc + d for some cell i. Then based on Equations (3) to (6),

vf `(ρc − d) ≤qin
i (k) ≤

vfρc
ρjam − ρc

`(ρjam − ρi(k)),

vf `(d− ρc) ≤qout
i (k) ≤ vf `ρc.

This holds regardless of the number of in-neighbors, out-neighbors, sources, and sinks
that are connected to i because of Assumption 4.2. Using these inequalities, we can
bound the density update as follows:

ρi(k + 1) ≤ ρi(k) +
vf∆t

L

(
ρc

ρjam − ρc
(ρjam − ρi(k))− (ρc − d)

)
.

Under Assumption 4.1, ρc
ρjam−ρc ≤ 1 which means ρi(k + 1) ≤ ρc + d if

∆t ≤ L

vf
. (8)

Similar arguments show ρi(t + 1) ≥ ρc − d when Equation (8) holds, so V (ρ) is non-
increasing. If initially ρc− d ≤ ρi(t) ≤ ρc, analogous arguments using differing bounds
on qin

i and qout
i lead to the same conclusion of Equation (8).
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To prove a guaranteed decrease in V (ρ(k)), we must look the cardinality of Ξ(k) =
{i ∈ C | ρi(k) = maxi∈C ρi(k)} and Φ(k) = {i ∈ C | ρi(k) = mini∈C ρi(k)}, and prove
that each cardinality will decrease.

Suppose there exists some i ∈ Ξ(t) ∩ Ξ(k + 1) s.t. ρi(k + 1) = ρi(k) = ρc + d with one
out-neighbor j. This only occurs when qin

i (k) = qout
i (k), and applying Equations (3)

to (6), this requires ρj(k) = ρc + d where j is the out-neighbor of i. If j satisfies
ρj(k+1) = ρj(k) = ρc+d then we reapply this argument until we can find the front of

group (defined when an out neighbor is not ρc+d, or is a sink). For this cell h, we know
qin
h (k) > qout

h (k), so ρh(k+1) < ρh(k) and Ξ loses a member at time t+1. It is possible

for a node i s.t. ρi(k) < ρc + d to satisfy ρi(k + 1) = ρc + d, but this can only occur
if each out-neighbor of i is at ρc + d, this can be seen from Equation (4). So for each
cluster of nodes in Ξ(k), one (or more, at an intersection) node can join Ξ(k+ 1), but
each node that joins requires all of its out-neighbors to be at ρc + d. On a single road
side, one cell can join Ξ(k+1) and one cell must leave Ξ(k+1), at a normal intersection
four cells can join Ξ(k+ 1) and four cells must leave Ξ(k+ 1), this can be also derived
from Equations (3) to (6). This is a traffic congestion wave. Under Assumption 4.3,
the wave will eventually propagate to a source, and once the wave is adjacent to a
source, the it must be |Ξ(k + 1)| < |Ξ(k)| because any cell leading into the wave will
not achieve ρc + d. Analogous arguments hold for Φ. Once both Ξ(k+ 1) and Φ(k+ 1)
are empty, then V (ρ(k+ 1)) < V (ρ(k)). This holds for sufficiently large V (ρ(k)), so in
summary V (ρ(k)) approaches a neighborhood around vfρc asymptotically.

We can make a similar Lyapunov argument proving that

lim
t→∞

ρi(t) ∈ [ρmin
src , ρ

max
snk ], ∀ i ∈ C,

where ρmin
src = ρc mini∈C(αi +

∑
j∈C kji) and ρmax

snk = ρjam − ρc mini∈C(βi +
∑

j∈C kij).
Bounding the flow rate in and out excludes any state from being at equilibrium outside
these bounds, given the previous assumptions.

Remark 4.5. Given additive zero-mean i.i.d. noise on the dynamics equation (6), it
is easy to see that V (E[ρ(k + 1)]) ≤ V (ρ(k)). The effect of this noise on convergence
to equilibrium is tested in simulation, see Figure 8. �

Remark 4.6. The previous analysis helps motivate the rerouting algorithm. Main-
taining the sufficient condition Assumption 4.2 is crucial for equilibrium behavior of
the network, and it is expected that, when boundary conditions oscillate about this
condition, convergence to a close-to-equilibrium condition will occur. However, within
these constraints we would like to hasten convergence to further reduce delays, the
benefits of which are heightened under time-varying boundary conditions.

4.2. Rerouting Algorithm

In some situations, it is feasible to direct vehicles where to go, in order to maintain a
balanced network over time. One example is a near future road setting where driverless
vehicles can be dynamically reassigned to pick up waiting passengers. Freight-type of
vehicles or autonomous cars in mobility-on-demand systems could also be influenced
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in real traffic based on AIM-vehicle communication mechanisms. Control over vehicle
direction means that K can be altered under some constraints to improve the total
flow over the time interval. Because maximum flow is achieved when ρi = ρc, ∀ i ∈ C,
flow through intersections can be redirected from more dense roads to less dense roads,
keeping the system close to ρc. This problem is formulated in Problem 2.

A greedy approach suits this problem because it increases immediate flow through the
intersection and speeds up the balancing of neighboring roads while maintaining the
equilibrium of the natural dynamics. A potential strategy is to redirect flow from all
in-neighbors of an intersection to the least dense out-neighbor. If the least dense out-
neighbor is more dense than ρc, then redirect towards a sink if possible. However, this
approach creates congestion when sinks are not ideal by attempting to direct flow out
of the system but the sink restricting the flow out, so we require an alternative policy.
Instead, each out-neighbor is sorted according to how much flow they will allow in,
and they are paired with in-neighbors which provide the most flow, see Rerouting
Algorithm.

Algorithm 2: Rerouting Algorithm

1 for each intersection z ∈ Z at each time k do
2 D+ ← vector of cells flowing into z, sorted by decreasing density;
3 D− ← vector of cells receiving flow from z, sorted by increasing density;
4 for γ ∈ {1, . . . , |D+|} do
5 x← D+

γ ;

6 y ← D−γ ;

7 for ζ ∈ {1, . . . , n} do
8 if kx,ζ > 0 and ζ 6= y then
9 kx,ζ ← kmin;

10 end
11 if kζ,y > 0 and ζ 6= x then
12 kζ,y ← kmin;
13 end

14 end
15 kx,y ← 1− (|D+| − 1)kmin;

16 end

17 end

This algorithm is decentralized, the only information required is from immediate neigh-
bors of an IM. Intuitively, the algorithm is improving flow by directing flow from the
most dense in-neighbors of the intersection to the least dense out-neighbors so that
the flow from/to the most/least congested road is relatively unrestricted. This pushes
both states more quickly towards ρc, and because they are the furthest away from
ρc, this helps decrease V (ρ(k)) more rapidly. Under varying boundary conditions, this
improvement is enhanced.

5. Simulation Results

In simulation, both lane reversal and rerouting vehicles reduce overall traffic delay
under imbalanced conditions as we discuss next. We use ∆t = 1 second, L = 500
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meters, ` = 4 lanes per road, and vf = 60 km/hr, which also satisfy Equation (8).

Note, ρjam ≈ 226 veh
km·lane was calculated by assuming an average vehicle length of

4.11 meters and an average gap between stationary vehicles of 0.31 meters. We chose
ρc = ρjam/3.

Lane Reversal Algorithm

Generally, lane reversal creates a significant short-term improvement of traffic flow.
Lane reversal can hinder overall traffic flow in the long-term when reversing a lane
requires lane merging somewhere else in the system or when the road side with less
lanes receives heavy traffic flow afterwards. This first issue can be addressed through
coupling roads together so that their control variables are equal and no lane merging
is required between them, in simulation we choose the more conservative control value
from both intersections and apply that to both roads. The second issue can be at least
partially addressed through predicting traffic patterns using past data or communica-
tions with a larger portion of the road network, though we do not address this in this
paper.

We simulated a two road network with an intersection between them, sources and sinks
at the boundary, and an initial state which had light congestion randomly sampled
from [0, ρjam/2] on one side of both roads and heavy congestion randomly sampled
from [ρjam/2, ρjam] on the other. Instead of optimizing over a time horizon, a greedy
algorithm was enough to see significant improvements. The boundary conditions α
and β on one end of the network were randomly sampled from [0, 1] and α = 1 and
β = 1 on the other side, creating an imbalanced flow. U-turns do not occur, and
flow from each road to any neighbor is equally likely. One example of the benefit of
lane reversal on the objective function is shown in Figure 6, it is evident that the
flow rate increases immediately after lane reversal. The throughput improvement of
100 experiments is shown in Figure 7, we can see a large variance in the data but
there is always significant improvement. Note, maintaining a constant number of lanes
along all paths becomes impossible with a larger system, creating merges which can
negatively affect the overall equilibrium.

We also added zero-mean Gaussian noise to Equation (6) to check the robustness of
Theorem 4.4 (Stability to critical density values), the effect of noise on the two road
network is seen in Figure 8. Deviation from equilibrium was averaged over each cell
and over 120 time steps, with the initial state at equilibrium. With zero noise there is
no deviation from equilibrium, and as the noise level increases, the average deviation
from equilibrium increase quite linearly from small noise values.

Rerouting Algorithm

The rerouting policy improves flow rate in both short term and long term while main-
taining the original equilibrium, though in a less dramatic fashion than lane reversal.
We have simulated a two block by two block road network with random initial densi-
ties under random constant boundary conditions with kmin = 0.05. We implemented
the rerouting policy on the central intersection, see Figure 9, black represents very
dense and white represents no vehicles. This shows an initially unbalanced state which
converged to a more efficient state with help from the rerouting policy in the middle
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Figure 6. Lane reversal on two roads. The solid line represents lane reversal and the dashed represents no

lane reversal, note the immediate improvement. In this example, one lane was reallocated from westbound to
eastbound at t = 0 then the state remained constant.

Figure 7. Relative improvement under lane reversal and rerouting algorithm, respectively.

intersection, see 10.

In Figure 7, we can see relative improvements on the total flow rate given by this policy,
ranging from negligible to moderate. We note that the objective function describes the
performance of the each cell in the system, and in this network there are 240 cells, only
8 of which are connected to the intersection performing the policy, so only moderate
improvement is expected. Under specific initial conditions, the most improvement was
seen at 36%, on average improvement is between 0 and 8%. In every case, this algorithm
improved overall flow rate.

6. Conclusion and Future Work

In conclusion, we extended the cell transmission model and established objective func-
tions with the goal of minimizing total time spent on the road. We proposed a dis-
tributed algorithm to efficiently calculate and implement an appropriate lane direction
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Figure 8. Here, the effect of noise on the equilibrium at critical density is shown.

t = 0 seconds t = 20 seconds
Figure 9. Twelve Road Network

reallocation. We also proposed a distributed algorithm to dynamically reroute vehicles
to improve the long term behavior of the system. We proved convergence of the lane
reversal algorithm to a critical point and bound the equilibria of the traffic rerouting
algorithm under certain conditions. We showed through simulations performance gains
using lane reversal on a network under particular conditions and using rerouting under
different conditions.

There are many avenues for future work on this problem. One avenue is improving
the traffic model and comparing its predictions with real traffic traffic data to ensure
accuracy, in particular the vehicle time spent in an intersection is currently assumed
constant. A microscopic model will better capture the dynamics of real vehicles on a
road network, for example by implementing simulations which include spawning and
tracking individual vehicles. Measurement and model uncertainty could be character-
ized for more accurate estimation. Reinforcement learning can address some of the
issues with using a greedy lane reversal algorithm to further reduce total time delays.
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Figure 10. Rerouting on grid network. The dashed line represents rerouting and the solid line represents no

rerouting, note the consistent improvement.
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