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This work deals with the coordinated charging/discharging of a population of plug-in electric vehicles 

(PEVs) under energy efficiency, SOC, battery capacity, and power-line capacity constraints, to minimize 

energy cost. To address this, we introduce a framework in which the power grid is modeled as an undi- 

rected rooted tree, the root of this tree represents the generation/transmission side of the system and 

the leaves represent PEVs. Due to the several constraints, we are led to a non-convex optimization prob- 

lem formulation subject to a complementarity constraint. We then show how a relaxed version of the 

problem can capture a wide set of optimal solutions for the original problem. After this, we propose a 

hierarchical algorithm for the computation of the PEVs’ charging/discharging profiles based on the relaxed 

problem formulation. The root generates a control signal based on the price per unit of power accord- 

ing to the demand for each time. Intermediate nodes represent congestible elements on the distribution 

side (e.g., transformers), which have a bound on the demand they can satisfy. In the proposed algorithm, 

intermediate nodes modify the control signal according to the difference between the demand they take 

care of, and its capacity upper bound. PEVs update their charging/discharging strategies according to this 

pricing signal. A proof of algorithm convergence to the optimizer of the problem is provided. Simulations 

demonstrate the algorithm performance and convergence rate. 

© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

As awareness toward climate change and greenhouse emissions

ncreases, clean alternatives for energy generation and trans-

ortation are being actively investigated. Plug-in Electric vehicles

PEVs) are accepted as a promising solution to the problem of

lean transportation. However, a large penetration of PEVs in an

ncoordinated way may produce adverse effects on the grid oper-

tion. A possible solution is that PEVs deliver/absorb power to the

rid in order to provide ancillary services [1] . To this end, PEVs’

atteries can charge when there is generation excess, or to inject

ower if there is demand excess, e.g., peak times. In providing an

lgorithmic solution to this problem one can follow a centralized

r decentralized approach. While centralized approaches can lead

o optimized solutions in a faster manner, decentralized algorithms

llow users to interact directly, in a way that does not require

he exact communication of their habits, thus helping preserve
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rivacy (e.g. by means of aggregated power usage corrupted by a

ifferentially private mechanism) and reducing the computation

urden at a central site. Motivated by this, in this manuscript,

e propose a hierarchical architecture in which intermediate ag-

regators coordinate with PEVs an optimal Vehicle-to-Grid (V2G)

harging strategy. In V2G, PEVs are able to inject energy back

nto the grid based on a coordination signal, keeping at sight the

bjective of collecting enough energy to satisfy the PEV user’s

equirement. To do so, intermediate pricing and aggregated load

ignals are employed, which helps with privacy preservation goals.

Most of the literature on PEV integration is oriented to the

o-called Vehicle-one-Grid (V1G) paradigm, in which PEVs use

heir load flexibility to shift their own demand over time, without

eeding any energy into the grid, see [2,3,4] . This allows to use the

rid optimally over time, avoiding the need for capacity increases

hat would be required under uncoordinated charging. These

orks fall under the category of centralized algorithms, since all

he computation is carried out by a single processor. In [5] the

uthors present an iterative approach to charge EVs tied to the

istribution grid. The centralized algorithm checks the EV charging

rofile for decoupled power flow feasibility, and if the profile is

ot feasible, new constraints are defined at the distribution buses

f the grid. This approach is also centralized, and the power flow
rved. 
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feasibility is studied via a decoupled power flow analysis. Other

works [6,7] present a hierarchical solution to the V1G problem.

In these papers, a pricing signal is transmitted by the utility to

all PEVs, which update their charging strategy by solving a local

optimization problem. Their updated charging strategy is then fed

back to an aggregator located at the utility which computes an

updated pricing signal. In [8] , a similar coordination signal is used

for hierarchical PEV charging control, but the charging strategy is

computed using a load balancing algorithm. In [9] , the authors pro-

pose an approach to reach an optimal solution to the EV charging

problem in a decentralized manner. However, this approach solves

local optimization problems and no comparison of the obtained

solution to the optimal one is provided. This manuscript is closer

to the work reported in [10] , which presents various algorithms

for hierarchical V1G over a grid with line capacity constraints, and

batteries subject to capacity constraints. However, the algorithms

in [10] require the execution of inner loop iterations, which sig-

nificantly increase computational and communication cost. In [11] ,

the authors propose the application of the Alternating Direction

Method of Multipliers (ADMM) method to find a decentralized

algorithm that allows a Virtual Power Plant manage a group of EVs

to solve an optimal-tracking (demand response) problem. The EVs

and power grid are similarly-constrained as in [10] , participating in

a V1G capacity, however the algorithms do not require inner loop

iterations as in [10] . In [13] and [12] , the authors address a coor-

dination problem for controllable loads and PEVs respectively in a

distribution network with capacity constraints. The work [14] also

employs ADMM to coordinate PEVs using an aggregator. However,

the problem to be solved has a completely decomposable cost

function, i.e., it is the sum of local cost functions for each PEV

and for an aggregator. In our work, the cost function is a sum of

convex functions of the aggregated load. This couples the variables

associated to each PEV in a way that ADMM cannot be directly

implemented. In [15] the authors present a distributed algorithm

to solve a PEV coordination problem that considers battery degra-

dation. Their study, as well as all the aforementioned ones, does

not consider the PEVs injecting power into the grid, which is a sit-

uation in which taking into account battery degradation and state

of charge may play an important role in the optimization problem.

For V2G, where PEVs inject power into the grid, available works

include [16] , where a centralized optimization problem is solved

using simulated annealing and ant-colony optimization algo-

rithms. Further, [17] presents a purely centralized optimal control

algorithm to solve a V2G problem with uncertainty. A V2G game-

theoretic formulation is given in [18] , where PEVs are modeled as

batteries that aim to inject to or draw from an aggregator a certain

amount of energy in order to meet a desired energy state in such

aggregator. This study does not consider battery dynamics. Unlike

this manuscript, none of the aforementioned V2G works consider

any distribution grid related constraint, or grid topology model. 

Here, we present a novel hierarchical V2G optimization algo-

rithm for the coordination of a fleet of PEVs connected to different

points of the distribution side of the power grid. With respect

to previous work, our novel V2G problem scenario considers

simultaneously SOC, capacity, and efficiency constraints for EV

batteries, together with distribution line capacity constraints. Our

power grid is modeled as a rooted tree graph, where the root

node is the generation/transmission section of the grid, including

the distribution substations. In this model, agents or nodes rep-

resent buses on the distribution feeder, and PEVs are modeled as

leaves of the tree. We then exploit this hierarchy to define the

communication structure of our V2G hierarchical coordination

algorithm. In this approach, all PEVs solve a local optimization

problem to compute their charging/discharging profile over a finite

discrete-time horizon. Then, they communicate it to the bus they

are connected to, this aggregates its PEV and its non-PEV load,
nd sends it to the next bus up in the hierarchy. The aggregation

s performed in a cascaded manner until the overall load reaches

he root node, which employs such information to compute a

ontrol signal that is down-streamed through the tree. As this

ignal passes through each bus, it is modified to account for the

apacity limitations of the transmission lines that carry power to

uch bus. A final modified signal reaches each PEV, which employs

t to recompute their charging/discharging profile. An advantage of

his approach is that PEVs do not have to provide directly private

nformation on their usage to the power-grid operator, but to the

ntermediate aggregators. Additionally, almost the entire computa-

ional load falls on the PEVs, while all buses in the network only

ct as aggregators. This results into good scalability properties of

he algorithm. An important contribution of this work is the fact

hat our algorithm is proven to converge to the optimal solution

o the proposed PEV charging/discharging problem. Additionally,

ith the hierarchical decision-making structure presented here

nd the relaxation approach for the line capacity constraints, other

ecomposition approaches can be adapted. 

A significant contribution of our work tackles the challenge of

odeling charge and discharge of batteries subject to efficiency

osses while avoiding simulataneous charge and discharge. This

ould require either to model charge and discharge separately and

mpose a complementarity constraint on them, or have a single

ispatch variable and a non-linear mixed-integer formulation with

 switched efficiency parameter that changes when the battery

ispatch changes sign. We choose the former and provide a the-

retical result that allows to relax the complementarity constraint

etween charge and discharge under a general set of conditions.

he results proves that the optimal solution still satisfies the com-

lementarity property, even though it is not explicitly enforced for

n the relaxation. 

Finall, simulations show the V2G hierarchical algorithm per-

ormance on various scenarios. This work streamlines, extends and

ompletes the preliminary work appeared in [19] in several ways.

ere, we provide a proof of convergence for the main algorithm,

e characterize the size of the penalization parameters needed to

chieve a desired tolerance in the global constraints, and provide

 more comprehensive simulation analysis of the algorithm. 

.1. Basic notation 

Let R denote the set of real numbers, and R 

n the n -dimensional

eal vector space. In what follows, ‖ x ‖ represents the Euclidean

orm of x ∈ R 

n and | x | denotes the absolute value of x ∈ R . For a

nite set A , we let |A| denote the cardinality of A . Given a set B,

e denote A \ B � { a ∈ A | a / ∈ B} . 

. Problem formulation 

Consider a population of N plug-in electric vehicles (PEV)

hat are connected to the power grid. This population is spread

ver a large area, meaning that PEVs are connected to distinct

oints of the distribution grid. The objective of each PEV is to

ecide a charging/discharging schedule that allows them to collect

he energy required by the user before a certain deadline. The

apacity of PEVs to discharge power into the grid, along with the

ime-flexibility to charge the battery, allows users to provide a

ombination of energy time-shift and load deferral. This allows

EVs to provide operation benefits to the power grid. 

In this section, we formulate the mathematical framework and

odels that are used in the sequel while introducing notation.

e will consider discrete-time dynamical models, where all state

nd decision variables are indexed by the set of natural numbers.

n this way, we divide a finite-time horizon line into T intervals

f constant duration �. We index each of these intervals by
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Fig. 1. Graph model of the power grid. Node r represents the genera- 

tion/transmission part of the grid, along with the connection points of the distri- 

bution feeders. For a bus b , the set inside dashed-line boundary are its ancestors, 

an( b ), the parent of b is its immediate ancestor, pr( b ), the children of b , ch( b ), is the 

set inside a continuous boundary, which is contained in the set of descendants of 

b , des( b ), or the set contained within a dash-dot boundary line. The set dN( b ) are 

all the PEVs that belong to des( b ). Similar sets an( i ), pr( i ) can be defined for a PEV 

i ∈ N . 
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M  
 ∈ { 1 , . . . , T } ⊆ N , and the charging/discharging scheduling of the

EVs is also described in terms of variables indexed by t . 

.1. Structure of the power network 

The power grid is composed of three easily discernible layers:

eneration, transmission, and distribution. We assume that the

istribution side of the grid is composed of radial feeders only

with tree topology), and each feeder has a single connection

oint to the transmission grid. This is a reasonable assumption, as

ost existing distribution feeders have this structure. 

We use the rooted tree notion to model the distribution net-

ork and its interaction with the transmission/generation side of

he grid, as well as with the population of PEVs. More precisely,

onsider an undirected graph G � (V, E ) , where V is the set of

odes and E is the set of edges. A path P(i, j) , in G for nodes

, j ∈ V, is defined as a sequence of nodes { i 1 , . . . , i m 

} such that

 1 = i, i m 

= j and (i l , i l+1 ) is an edge of G, for all � ∈ { 1 , . . . , m − 1 } .
 graph G is a tree if there is a unique path between any two

odes i, j ∈ V . The distance from node i to node j in G is given by

he number of edges in the path P(i, j) . For an undirected tree,

ny r ∈ V can be called a root of G. In this way, the power grid

s represented by an undirected rooted tree T � (V, E ) , with the

eneration/transmission side of the grid be condensed in the root

ode r of the tree, see Fig. 1 . All the distribution feeders that we

onsider in our model branch out of the root, and all the buses in

hese distribution feeders are represented by nodes of T . 
For a node � ∈ V, the set of its children , ch( � ), is composed by

ll the nodes that are connected by a single link to � , and whose

istance to r is larger than that of � . The set of descendants of � ,

es( � ), is the set of all nodes � ′ ∈ V \ { � } such that � ′ ∈ P(r , � ) . Sim-

larly, the parent of � , denoted as pr( � ), is the unique node that is

onnected to � by a single edge, and belongs to P(r , � ) . The set of

ncestors of � , denoted by an( � ), is the set of all nodes in P(r , � ) \
 � } . A node i ∈ V is called a leaf of G if it is only connected to one

ode � ∈ V \ { r } . See Fig. 1 for an illustration of these concepts. 
In what follows, we distinguish M ⊂ V to be the set of nodes of

 that consist of the distribution nodes and the root node. In ad-

ition, the set of PEVs attached to such buses are also nodes of T 
nd included in the set V . Without loss of generality, let us define

 � { 1 , . . . , N} , to index the set of PEVs, and M � { N + 1 , . . . , r } .
iven � ∈ M , we define the subset of its children which are

lso PEVs as dN (� ) � des (� ) ∩ N . In our tree model, all edges

(l 1 , l 2 ) ∈ E, such that l 1 , l 2 ∈ M , represent distribution lines. Each

istribution line ( l 1 , l 2 ), has an associated parameter P max 
l 1 l 2 

(t) that

orresponds to an upper bound on the amount of power that can

o through the line. This limitation represents the thermal limit

f the distribution line. Likewise, there is a maximal amount of

ower P max 
r (t) that the grid generation represented by node r can

rovide at each time t ∈ τ . 

.2. PEV battery model 

We assume that the battery of each PEV follows the dynam-

cs: 

 i,t = z i,t−1 + 

αc 
i 

βi 

u i,t −
1 

αd 
i 
βi 

v i,t , 

here u i , t ≥ 0 is the charging power for the battery during time

nterval t ∈ τ , v i,t ≥ 0 is the power discharged from the battery

uring time t ∈ τ , αc 
i 

∈ (0 , 1) is the battery system charging ef-

ciency, αd 
i 

∈ (0 , 1) is the battery system discharging efficiency,

i is a parameter that consists of the battery energy capacity

ivided by the duration of each time interval t ∈ τ , and z i , t is the

tate of charge (SOC) at the end of time interval t ∈ τ . The SOC

ust satisfy that z i , t ∈ [ z i , min , z i , max ], for 0 ≤ z i , min < z i , max ≤ 1. In

ddition, some power bounds must be established in the battery

harging/discharging, namely u i , t ≤ u i , max and v i,t ≤ v i ,max . Then,

he charging/discharging action of each PEV can be characterized

y a demand profile δi � (δi, 1 , . . . , δi,T ) , where δi,t � u i,t − v i,t ,
 ∈ N and t ∈ τ . It is important to note that since it is not physi-

ally possible that the battery charges and discharges at the same

ime, u i,t v i,t = 0 must hold for all t ∈ τ . 

Linear difference equations have been used to model batteries

rom lead-acid to Li-Ion in several works and software tools used

n academic studies as well as in industry [6,7,20,21] . The model

e use in the present work is an extension of the one introduced

n [6] , with the difference that our model accounts for energy dis-

harge to the grid, and the consequent efficiency losses. It captures

he main power balance parameters that affect the performance of

n electro-chemical storage system. 

The goal for a PEV is to collect a certain amount of energy in

rder to be able to operate. Let Z i ⊂ τ , for all i ∈ N be a set of

imes at which the i th vehicle has access to the power grid. Then,

t must hold that z i , q ≥ z i , op , where z i , op is the minimum SOC to

e collected and q = max Z i is the deadline for reaching that SOC. 

.3. Load buses in the distribution feeders 

As it has been stated in Subsection 2.1 each of the nodes

 ∈ M \ r represents a bus in a distribution feeder. The bus is

haracterized by a demand profile d � � { d � , t } t ∈ τ associated to it.

his demand is the aggregate of the non-PEV demand attached to

he node � , denoted by L � , t ≥ 0, with the demand of all nodes that

re children of node � , i.e.: 

 �,t � 

∑ 

� ′ ∈ ch (� ) 

d � ′ ,t + L �,t , (1) 

here, with a slight abuse of notation, we identify d i , t ≡ δi , t , for

 ∈ N . Notice that ch( � ) can either be PEVs or other nodes in

 \ r , thus the expression in (1) is a recursion that can be written
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in terms of the descendants of � as follows: 

d �,t � L �,t + 

∑ 

� ′ ∈ des (� ) ∩M 

L � ′ ,t + 

∑ 

� ′ ∈ dN (� ) 

δ� ′ ,t , (2)

\ vskip- \ lastskip \ pagebreak for all � ∈ M \ r , where recall that

dN (� ) � N ∩ des (� ) . Since PEVs may be descendants of node � ,

d � , t may be negative, which means that power is flowing upstream

from node � toward its parent pr( � ). 

Remark 2.1. Notice that the power flowing through line ( � , � ′ ),
�, � ′ ∈ M at time t ∈ τ is given by d � , t , if � ′ ∈ pr( � ), and d � ′ ,t if

� ∈ pr( � ′ ). This comes from the radial structure of all distribution

feeders and the fact that the demands d � , t and δi , t must be satis-

fied for all � ∈ M and i ∈ N , and for all t ∈ τ . Given the rooted tree

structure of the network, there is a one-to-one correspondence be-

tween nodes in M \ { r } and the transmission lines in the distribu-

tion side. Then, in order to account for the bounds in the trans-

mission capacity, for all distribution lines, it suffices to pose the

following constraints: 

| d �,t | ≤ P max 
� pr (� ) 

(t) , ∀ t ∈ τ, � ∈ M \ { r } , 
where, consistent with the notation, P max 

� pr (� ) 
(t) is the transmission

capacity of the line between j and its parent. Therefore, for sim-

plicity of notation, we denote the capacity of the line between j

and its parent by P max 
� (t) , leading to: 

| d �,t | ≤ P max 
� (t) , ∀ t ∈ τ, � ∈ M \ { r } . 

Unlike static storage systems, PEVs still behave more often like

loads rather than generators, since their primary objective is to re-

plenish the battery in order to satisfy the owner’s usage objective.

Therefore, it is expected from PEVs to inject power into the grid

only when system load peaks are high enough or when a thermal

limit constraint in the distribution circuit is susceptible to be vio-

lated due to excess load. Since the peak shaving operation aims to

only reduce the peak, it is not expected that the PEVs will gener-

ate a large enough reverse flow to activate thermal constraints, so

in general it will be the case that d �,t > −P max 
� (t) , for � ∈ M \ { r } . 

2.4. The generation/pricing node 

The node r ∈ V, referred to as the generation/price node models

the behavior of the generation/transmission side of the power grid.

For simplicity, we consider that this node has the a finite capacity

to provide power to the distribution feeders connected to it. It is

worth noticing that the demand profile d r , t , t ∈ τ , represents the

aggregate demand of the entire distribution grid at time, given

by: 

d r ,t � 

∑ 

� ∈ ch (r ) 

d �,t . 

Therefore, the node r is represented by its demand profile, the

maximum amount of power that it can provide, denoted by

P max 
r (t) , and the generation cost for the energy supplied by the

grid at time t ∈ τ . This generation cost is given by C : R → R ,

which is a convex and increasing function of its argument. The

argument of this function corresponds to the aggregate power

that is provided by the grid to the loads at time t . The function C

models an electricity price that increases as the demand increases

and decreases if demand decreases. Since this function is intended

to shape user behavior, C is designed to a great extent by the

grid operator. It is envisioned that the PEVs and users are actually

managed by intermediate aggregators which act on their behalf

to interact with the larger power grid operator. We make the

following assumption: 

Assumption 2.1 (Derivative of C is Lipschitz). The function C is
′ 
such that C is Lipschitz in its domain, with Lipschitz constant l C . i  
.5. Optimal control problem 

The charging strategy is devoted to minimize a function cor-

esponding to the total cost of the energy provided by the utility

uring a finite horizon T , subject to user needs and line capacity

onstraints. Taking into account the consideration in Remark 2.1 ,

e formulate the following optimization problem: 

roblem 1: min u, v J(u, v ) 
ubject to: 

(u i , v i ) ∈ F i , ∀ i ∈ N , (3a)

δi,t = u i,t − v i,t , ∀ t, i ∈ N , (3b)

d �,t = 

∑ 

� ′ ∈ ch (� ) 
d � ′ ,t + L �,t , ∀ t, � ∈ M , (3c)

| d �,t | ≤ P max 
� (t ) , ∀ t , � ∈ M \ { r } , (3d)

| d r ,t | ≤ P max 
r (t ) , ∀ t . (3e)

Here, 

(u, v ) = 

T ∑ 

t=1 

C(d r ,t ) . (4)

nd the set F i is defined as 

 i = { (u, v ) ∈ R 

2 nT | (5 a ) through (5 h ) hold ∀ i ∈ N , t ∈ τ } , 
here 

z i,t = z i, 0 + 

1 
βi 

∑ t 
� =1 

(
αc 

i 
u i,� − 1 

αd 
i 

v i,� 
)
, t ∈ τ, (5a)

z i ,min ≤ z i,t ≤ z i ,max , t ∈ τ, (5b)

0 ≤ u i,t ≤ u i ,max , t ∈ τ, (5c)

0 ≤ v i,t ≤ v i ,max , t ∈ τ, (5d)

u i,t = 0 , t / ∈ Z i ⊆ τ, (5e)

v i,t = 0 , t / ∈ Z i ⊆ τ, (5f)

z i,T ≥ z i ,op , (5g)

u i,t v i,t = 0 , t ∈ τ. (5h)

emark 2.2. The usage objective can be more complicated than

 deadline. Our present approach can integrate the usage model

resented in [8] which accounts for departure times and travel re-

uirements. However, for the sake of clarity in our analysis, we do

ot include it this manuscript. 

Notice that constraint (5g) is a reformulation of the deadline

onstraint, using the fact that z i,T = z i,q for q = max Z i . Also notice

hat (5h) makes the problem non-convex. In what follows, we will

elax this non-convex constraint. We conjecture that the solutions

f the relaxed optimization problem will satisfy this constraint

n most of the cases, which depends on the problem parameters.

he following result provides a characterization of such solutions,

hich are in the interior of the feasible set by an amount depend-

ng on 1 − max i ∈N αc 
i 
αd 

i 
or for a relaxed version of Problem 1 in

hich the lower bounds on d � , t , � ∈ M , t ∈ τ , are dropped. 

emma 2.1 (On the relaxation of Problem 1). The optimal so-

utions for the relaxed version of Problem 1, (u, v ) which sat-

sfy the constraints (5b) and (5g) with strict inequalities, and are
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uch that (3d) and (3e) hold as −P max 
� (t) + ε < d �,t < P max 

� (t) for

≥ max i ∈N { (1 − αc 
i 
αd 

i 
) u max , ((αc 

i 
αd 

i 
) −1 − 1) v max } , must also satisfy

5h) . In addition, if the constraint (3d) and (3e) are replaced by

 �,t ≤ P max 
� (t) for all t and j ∈ M , then the relaxation of the prob-

em becomes exact for any choice of parameters. 

The proof of the lemma can be found in Appendix A . In what

ollows, we assume that the solutions of Problem 1 satisfy the

ssumptions of the lemma. 

The next result is an adaptation of Theorem 1 in [7] , and shows

he uniqueness of the optimal demand profile generated by the

ptimizers of Problem 1. 

emma 2.2 (Uniqueness of the aggregate demand profile). Let

 

	 , v 	 and ˆ u , ̂  v be optimizers of Problem 1. Then it holds that
 

i ∈N (u 	 
i 
− v 	 

i 
) = 

∑ 

i ∈N ( ̂  u i − ˆ v i ) . 

The solution of this optimization problem is valley filling and

eak-shaving , i.e., if u, v is optimal, the PEVs will try to provide as

uch energy as possible in the highest-price times and will try to

btain as much energy as possible in the lowest-price times. 

In order to solve the relaxed version of Problem 1, we use

enalty functions to handle the coupling constraints. We formu-

ate the following relaxation of the problem: 

roblem 2: min u, v J(u, v ) + 

T ∑ 

t=1 

∑ 

� ∈M 

κ� �� (d �,t ) 

subject to: 

(u i , v i ) ∈ F̄ i , ∀ i ∈ N , (6a) 

i,t = u i,t − v i,t , ∀ t, i ∈ N , (6b) 

 �,t = 

∑ 

� ′ ∈ ch (� ) 

(d � ′ ,t + L �,t ) , ∀ t, � ∈ M , (6c) 

here �� : R → R ≥0 acts as a penalty function for the power

onstraint at node � ∈ M , defined as: 

� (d �,t ) � max { 0 , d �,t − P max 
� (t) } 2 , 

� > 0, for � ∈ M , and 

¯
 i = { (u, v ) ∈ R 

2 nT | (5a) through (5g) hold ∀ i ∈ N , t ∈ τ } . 
otice that: 

′ 
� (d �,t ) = max { 0 , 2(d �,t − P max 

� (t)) } , 
hen, �′ 

� (d �,t ) is globally Lipschitz continuous with Lipschitz

onstant l B = 2 , for all � ∈ M . 

.6. Analysis and design of the penalty method 

From [22] , it is known that for the penalty method to yield

 feasible solution to the original problem, it is necessary to use

on-differentiable penalty functions, except for selected cases,

hich our problem does not satisfy. Clearly, the quadratic penalty

unctions are continuously differentiable, therefore the solution to

roblem 2 may not be feasible for Problem 1. However, it is also

nown that if κ� → + ∞ , for all � ∈ M , the solution to Problem 2

ill get arbitrarily close to a solution to Problem 1. 

emma 2.3. If an optimal solution to Problem 2 satisfies the con-

traints (3d) (3e) and (5h) , then such solution is also an optimal so-

ution of Problem 1. 

By the result above, we have that a solution to Problem 2 is not

 solution to the relaxed version of Problem 1 only if it violates

t least one of the constraints given by (3d) or (3e) . Therefore,

 suitable way to study how close the solution to Problem 2 is
o a solution to Problem 1, is to analyze the maximum amount

f constraint violation for a given value of the parameters κ� , for

ll � ∈ M . In this way, one can design parameters κ� that lead to

 desired tolerance on the constraint violation. To this end, we

ntroduce the following assumption. 

ssumption 2.2 (Slater’s Condition). There exists a feasible solu-

ion u † , v † to the relaxed version of Problem 1, such that: 

 

† 
�,t ≤ P max 

� (t) − ε, � ∈ M , 

or all t ∈ τ , such that P max 
� (t) − ε > 0 , ε > 0 and does not depend

n � . 

The following result establishes how to choose all parameters

� . 

roposition 2.1 (Characterization of κ� ). Fix σ ∈ (0, 1) and let κ� >
 |M| T (J max − J min ) / (εσ min �.t P 

max 
� (t)) , for all � ∈ M , where 

J max � 

T ∑ 

t=1 

C(P max 
r (t)) , J min � 

T ∑ 

t=1 

C(−P max 
r (t)) 

et u 	 , v 	 be a solution to Problem 2. Then, u 	 , v 	 satisfies: 

 

	 
�,t ≤ P max 

� (t)(1 + σ ) , 

or all � ∈ M . 

The proof of this result can be found in Appendix A.1 . 

. A hierarchical control architecture 

Our main interest in the present work is to solve Problem 1

sing a decentralized/hierarchical communication and control ar-

hitecture that allows for distributed computation, scalability, and

rivacy. Next, we introduce a hierarchical approach for the solution

f Problem 2. For now on, let us assume that the optimization

roblem is feasible. 

.1. V 2 G hierarchical algorithm 

Our approach endows each element in the grid subject to

apacity limits with computation and communication capabilities.

he nodes act as intermediate aggregators which communicate

ver the network following the tree power-grid topology. In the

lgorithm, each element � ∈ V \ { r } sends its parent the aggregated

emand profile d � and, if ch( � ) � = ∅ , sends its children a control

ignal based on information provided by generation/pricing node

 , and the amount of violation on the maximum power constraints

f � ’s ancestors. 

The V2G hierarchical algorithm is inspired by the works pre-

ented in both [6,7] but we modify the approach to account for the

enalty functions of Problem 2. We do not consider more standard

lgorithms for distributed optimization such as ADMM [23,24] or

he primal-dual subgradient algorithm in [25] given the lack of

exibility they present to handle coupling constraints such the

ine capacity constraints in our formulation. 

More precisely, at each iteration k ∈ N , PEV i ∈ N generates a

emand profile δk 
i,t 

= u k 
i,t 

− v k 
i,t 

, for all t ∈ τ , which is feasible for its

wn battery constraints. Then, it transmits the profile to its parent,

hich in turn aggregates its own demand profile according to (1) .

his is done from the bottom up until the root node r computes

ts demand profile; see Fig. 2 for an illustration of the information

ow over the communication network. 

Based on its demand profile, r then provides a coordination

ignal p k r � [ p k 
r , 1 

. . . , p k 
r ,T 

] � ∈ R 

T , such that: 

p k r ,t � ηC ′ (d k r ,t ) + b k r ,t , 
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Fig. 2. Grid hierarchical structure. Dashed lines indicate communication links while 

solid lines represent power links. 
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for all t ∈ τ , for some η > 0, b k r ,t = ηκr �
′ 
r (d k r ,t ) , with �r as in-

troduced in Problem 2, and κr > 0. Then, each node � ∈ M \ { r }
computes the control signal p k � � [ p k 

�, 1 
. . . , p k 

�,T 
] � ∈ R 

T : 

p k �,t � p k pr (� ) , t + b k �,t , 

for all t ∈ τ , where: 

b k �,t = ηκ� �
′ 
� (d k �,t ) , 

where �� is introduced in Problem 2 and κ� > 0. When this signal

reaches each PEV i , this computes its next battery control by

solving the following optimization problem: 

(u 

k +1 
i 

, v k +1 
i 

) = argmin u i , v i J i (u i , v i , δk 
i ) 

subject to: 

(u i , v i ) ∈ F̄ i , (7)

where: 

J i (u i , v i ) = 

T ∑ 

t=1 

p k pr (i) , t (u i,t − v i,t ) + 

1 

2 

‖ u i − v i − δk 
i ‖ 

2 , (8)

and p k 
pr (i) , t 

= p k r ,t + 

∑ 

� ∈ an (i ) \{ r } b k �,t . The procedure must be iter-

ated until a stopping criterion is met. The parameters κ� can be

chosen according to Lemma 2.1 after determining the feasibility

of Problem 2 and deciding upon σ . A choice of η that guarantees

algorithm convergence is given next. 

Theorem 3.1 (Convergence result). The V2G hierarchical algo-

rithm converges to an optimizer of Problem 2 as k → ∞ , provided

Assumption 2.1 (on the derivative of C) holds and η < min { η1 , η2 },

where: 

η1 � min 

i ∈N 
(Nl C (1 + | an (i ) | )) −1 , 

η2 � min 

i ∈N ,� ∈ an (i ) 
( 2 κ� | dN (� ) | (1 + | an (i ) | ) ) −1 

. 

Proof. Consider the Lyapunov function: 

 (u, v ) = 

T ∑ 

t=1 

(
C(d r ,t ) + 

∑ 

� ∈M 

κ� �(d �,t ) 

)
. 

We show next that V (u k +1 , v k +1 ) ≤ V (u k , v k ) , for all k ∈ N and

 (u k +1 , v k +1 ) = V (u k , v k ) only if (u k , v k ) is a fixed point of the al-

gorithm. Finally, we show that a fixed point of the algorithm must

be an optimizer of Problem 2. 

From the convexity of C , it follows that: 

 

(
d k r ,t 

)
− C 

(
d k +1 

r ,t 

)
≥ C ′ 

(
d k +1 

r ,t 

)(
d k r ,t − d k +1 

r ,t 

)
, 
r, equivalently, 

 

(
d k +1 

r ,t 

)
≤ C 

(
d k r ,t 

)
+ C ′ 

(
d k +1 

r ,t 

)(
d k +1 

r ,t − d k r ,t 

)
. 

imilarly, we have that: 

� 

(
d k +1 

�,t 

)
≤ �� 

(
d k �,t 

)
+ �′ 

� 

(
d k +1 

�,t 

)(
d k +1 

�,t − d k �,t 
)
, 

or all � ∈ M . Then, we have that: 

 (u 

k +1 , v k +1 ) ≤
T ∑ 

t=1 

(
C 
(
d k r ,t 

)
+ C ′ 

(
d k +1 

r ,t 

)(
d k +1 

r ,t − d k r ,t 

))

+ 

T ∑ 

t=1 

∑ 

� ∈M 

κ� 

(
�� 

(
d k �,t 

)
+ �′ 

� 

(
d k +1 

�,t 

)(
d k +1 

�,t − d k �,t 
))

. (9)

sing the fact that C ′ is Lipschitz continuous: 

 

′ (d k +1 
r ,t 

)(
d k +1 

r ,t − d k r ,t 

)
≤ C ′ 

(
d k r ,t 

)(
d k +1 

r ,t − d k r ,t 

)
+ l C 

∣∣d k +1 
r ,t − d k r ,t 

∣∣2 
, (10)

ikewise, since �′ is also Lipschitz continuous with Lipschitz

onstant equal to 2: 

� �
′ 
� 

(
d k +1 

�,t 

)(
d k +1 

�,t − d k �,t 
)

≤ 1 

η
b k �,t 

(
d k +1 

�,t − d k �,t 
)

+2 

∣∣d k +1 
�,t − d k �,t 

∣∣2 
. (11)

n the last expression, we have replaced κ� �
′ (d k �,t ) by an equiv-

lent expression based on the definition of b k �,t , � ∈ M . Using

2) and the fact L � , t does not depend on k , for all � ∈ M , we

btain: 

 

k +1 
�,t − d k �,t = 

∑ 

i ∈ dN (� ) 

(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)
. (12)

or all � ∈ M . Employing now (10) and (11) to upper bound (9) ,

nd then plugging (12) into the result, we obtain: 

 (u 

k +1 , v k +1 ) ≤ V (u 

k , v k ) + 

T ∑ 

t=1 

l C 

∣∣∣∣∣∑ 

i ∈N 

(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)∣∣∣∣∣
2 

+ 

T ∑ 

t=1 

∑ 

i ∈N 

1 

η
p k r ,t 

(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)

+ 

T ∑ 

t=1 

∑ 

� ∈M\{ r } 

∑ 

i ∈ dN (� ) 

1 

η
b k �,t 

(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)

+2 

T ∑ 

t=1 

∑ 

� ∈M 

κ� 

∣∣∣∣∣ ∑ 

i ∈ dN (� ) 

(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)∣∣∣∣∣
2 

. 

(13)

n (13) , we have rewritten C ′ (d r ,t ) + κr �′ (d r ,t ) as 1 
η p k r ,t , for all

 ∈ { 1 , . . . , T } . 
Further, (u k +1 

i 
, v k +1 

i 
) , as the solution of the local PEV problem,

ulfills the condition of Appendix B for the local PEV problem.

hen, we obtain: 

T 
 

t=1 

( 

p k r ,t + 

∑ 

� ∈ an (i ) \{ r } 
b k �,t 

) (
u 

k 
i,t − v k i,t − u 

k +1 
i,t 

+ v k +1 
i,t 

)
−‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i + v k i ‖ 

2 ≥ 0 , (14)

here we have replaced the term p k 
pr (i) , t 

by its definition, and we

re using that 
∑ T 

t=1 | z t | 2 = ‖ z‖ 2 , for the vectors z = u i − v i ∈ R 

T .

ow, summing both sides of (14) over all i ∈ N and using

emma B.1 in Appendix B.1 to change the summation indices, we
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Fig. 3. Topology for the simulation scenario. Black circles denote buses in distribu- 

tion feeders, while squares denote PEVs. 
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btain: 

T 
 

t=1 

∑ 

i ∈N 
p k r ,t 

(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)

+ 

T ∑ 

t=1 

∑ 

� ∈M\{ r } 

∑ 

i ∈ dN (� ) 

b k �,t 
(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)
≤ −

∑ 

i ∈N 
‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i + v k i ‖ 

2 . (15) 

n the other hand, from Hölder’s inequality ( 
∑ 

i (a i b i ) ≤
( 
∑ 

i a 
2 
i 
) 1 / 2 ( 

∑ 

i b 
2 
i 
) 1 / 2 ) we have that: 

∑ 

i ∈I 

(
u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

)∣∣∣2 

≤ |I| ∑ 

i ∈I 

∣∣u 

k +1 
i,t 

− v k +1 
i,t 

− u 

k 
i,t + v k i,t 

∣∣2 
, (16) 

or any subset of I ⊂ V . Our next step is to use (16) to bound

he second and last summands of (13) , with I = N and I = dN (� )

espectively, then use the bound from (15) on the third and

ourth summands of (13) , and finally apply Lemma B.1 of Ap-

endix D on the last summand of (13) . We also use the notation
 T 
t=1 | z t | 2 = ‖ z‖ 2 , for the vectors z = u i − v i ∈ R 

T . In this way: 

 (u 

k +1 , v k +1 ) ≤ V (u 

k , v k ) 
+ 

∑ 

i ∈N 
l C N‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i + v k i ‖ 

2 

−
∑ 

i ∈N 

1 

η
‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i − v k i ‖ 

2 

+ 

∑ 

i ∈N 

∑ 

� ∈ an (i ) 

2 κ� | dN (� ) |‖ u 

k +1 
i 

− v k +1 
i 

−u 

k 
i + v k i ‖ 

2 . (17) 

ow, it is easy to see that: 

1 

η
‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i − v k i ‖ 

2 

= 

1 

η(1 + | an (i ) | ) ‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i − v k i ‖ 

2 

+ 

∑ 

� ∈ an (i ) 

1 

η(1 + | an (i ) | ) ‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i − v k i ‖ 

2 , 

or all i ∈ N . This follows from the fact that the term inside the

um does not depend on the index of such sum. Then, replacing

he expression above in (17) , it follows: 

 (u 

k +1 , v k +1 ) 

≤ V (u 

k , v k ) + 

∑ 

i ∈N 

(
Nl C − 1 

η(1 + | an (i ) | ) 
)
‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i + v k i ‖

+ 

∑ 

i ∈N 

∑ 

� ∈ an (i ) 

(
2 κ� | dN (� ) | − 1 

η(1 + | an (i ) | ) 
)

× · · ·

‖ u 

k +1 
i 

− v k +1 
i 

− u 

k 
i + v k i ‖ 

2 . (1

This means that V (u k +1 , v k +1 ) ≤ V (u k , v k ) , if: 

1 

η(1 + | an (i ) | ) > 2 κ� | dN (� ) | , ∀ � ∈ an (i ) , i ∈ N 

1 

η(1 + | an (i ) | ) > Nl C , ∀ i ∈ N . 

n fact, V (u k +1 , v k +1 ) < V (u k , v k ) whenever u k +1 
i 

− v k +1 
i 

� = u k 
i 

− v k 
i 
,

hen the V2G hierarchical algorithm converges to the set of

oints S � { (u, v ) ∈ R 

2 nT | ū i − v̄ i = u i − v i , and ū , ̄v are obtained

rom (7), for δ = u − v , ∀ i ∈ N } . Finally, let an equilibrium point
i i i 
f the algorithm be denoted as u 	 , v 	 . If we use the optimality con-

ition in Appendix B for the local problem in (7) , we have that 

T 
 

t=1 

p 	 pr (i) , t (u i,t − u 

	 
i,t − v i,t + v 	 i,t ) ≥ 0 , ∀ u, v ∈ F i . 

hen, if we sum the previous set of inequalities over all i ∈ N 

nd replace the expression for p 	 
pr (i) , t 

= p 	 r ,t + 

∑ 

� ∈ an (i ) \{ r } b 	 �,t =
C ′ (d 	 r ,t ) + 

∑ 

� ∈ an (i ) ηk � �
′ 
� (d 	 �,t ) into it, we obtain 

T 
 

t=1 

∑ 

i ∈N 
p 	 pr (i) , t (u i,t − u 

	 
i,t − v i,t + v 	 i,t ) 

= 

T ∑ 

t=1 

(C ′ (d 	 r ,t ) + κr �r (d 	 r ,t )) 

( ∑ 

i ∈N 
(δi,t − δ	 

i,t ) 

) 

+ 

T ∑ 

t=1 

∑ 

i ∈N 

∑ 

� ∈ an (i ) \{ r} 
κ� �

′ 
� (d 	 �,t )(δi − δ	 

i ) ≥ 0 , ∀ u i , v i ∈ F̄ i . 

y using Lemma B.1 in Appendix D, one recovers the optimality

ondition for Problem 2. This implies that any point in S is an

ptimizer of Problem 2, completing the proof. �

. Simulations and discussion 

Our simulation scenario consists in the rooted tree shown in

ig. 3 , where the squares represent the PEVs and the circles rep-

esent the nodes in M , with V = { 1 , . . . , 25 } , N = { 1 , . . . , 20 } ,
r (i ) = 21 , for i ∈ { 1 , . . . , 5 } , pr (i ) = 22 , for i ∈ { 6 , . . . , 10 } ,
r (i ) = 23 , for i ∈ { 11 , . . . , 15 } , and pr (i ) = 24 , for i ∈ { 16 , . . . , 20 } .
he initial conditions, efficiency and battery capacities have been

hosen to be different for all the PEVs. We establish bounds for

he power to go through lines N + 1 to N + 3 and N + 2 to N + 3

s: P max 
N+1 

(t) = 8 . 5 and P max 
N+2 

(t) = 14 . 5 , respectively, for all t ∈ τ .

here is no bound for other lines in the distribution feeders. The

unction C is chosen to be C(x ) = x 2 . All non-PEV demand, as well

s the initial conditions, efficiency and battery capacities can be

ound at http://nodes.ucsd.edu/sonia or is available upon request. 

Fig. 4 shows the optimal aggregate demand for all the PEVs in

 , for a centralized solution of the exact problem, i.e., without

enalty functions (red curve), and the aggregate demand given

y the V2G hierarchical algorithm after 30 0 0 iterations (black

urve). The centralized solution to Problem 1 is computed using

he package cvx . It can be observed that the hierarchical solution

lmost matches the aggregate given by the centralized benchmark.

ig. 5 show the aggregate PEV and non-PEV demand for the

entralized solution (red) and for the hierarchical solution (black).

n addition, we show in blue the non-PEV demand. It can be seen

hat the optimal solution is peak-shaving and valley-filling, since

EVs tend to provide energy between 12:00 and 17:00, and they

harge between 22:00 and 8:00. 

http://nodes.ucsd.edu/sonia
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Fig. 4. The optimal aggregate EV demand is shown in red. The aggregate EV de- 

mand from the V2G hierarchical algorithm is shown in black. 

Fig. 5. The non-PEV demand is shown in blue. The aggregate optimal demand is 

shown in red. The aggregate demand obtained through the V2G hierarchical algo- 

rithm is shown in black. 

Fig. 6. The non-PEV demand is shown in blue. The optimal aggregate demand is 

shown in red. The aggregate demand obtained through the V2G hierarchical al- 

gorithm is shown in black. The green line shows the upper bound for the power 

capacity. 

 

 

 

 

 

 

 

Fig. 7. The non-PEV demand is shown in blue. The optimal aggregate demand is 

shown in red. The aggregate demand obtained through the V2G hierarchical al- 

gorithm is shown in black. The green line determines upper bound for the power 

capacity. 

Fig. 8. Dots indicate the number of iterations for which the ‖ x k − x k −1 ‖ 2 < 10 −8 . 
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Fig. 6 shows the demand curve for the node N + 1 , with the

corresponding transmission line bound (green) for both central-

ized (red) and hierarchical (black) cases. It can be seen that the

solution of the V2G hierarchical algorithm satisfies the constraint

for all time. Fig. 7 shows the same features for the demand at

node N + 2 . For our simulation examples, the lower bound on d � , t 
is never active. This is mainly due to the ratio between the PEV

and non-PEV loads. For node N + 1 , it can be seen that for the

optimal solution, there is a t for which d N+1 ,t = P max 
N+1 

(t) . 
.1. Convergence rate 

In order to evaluate the impact of the number of PEVs on the

2G hierarchical algorithm performance, we have generated sim-

lation scenarios with 5, 20, 40, 80, 140, 200, 250, and 350 PEVs

espectively. In all cases, battery sizes as well as initial conditions

nd deadlines have been chosen at random, varying within the

ame order of magnitude. Two network topologies have been used

or this analysis, one corresponds to the one shown in Fig. 3 , the

ther one is a linear graph with seven nodes. For N = 5 , 20 and

40, we have run more than one scenario. 

The convergence time is characterized as the number of iter-

tions needed to reach a stopping criterion. Here, the stopping

riterion is that the squared length of the step between one iter-

tion and the next is less than 10 −8 . This metric has been selected

ased on (18) in the proof of Theorem 3.1 , which shows that the

unction V decreases along the trajectories of the algorithm at a

ate proportional to the squared step length. 

Fig. 8 shows the convergence time in number of iterations

or the different scenarios, versus the number of PEVs in each

cenario. It can be seen that there is significant variability in the

onvergence time between scenarios with the same number of

EVs, probably due to the random characteristics of the problem,

hich points to the need of further analysis to identify the con-

ergence rate drivers. Nonetheless, the trend appears to indicate

hat iterations increase with the number of PEVs and that, for the

articular scenarios considered, and that the convergence rate is

ublinear with respect to the number of PEVs taken. 

It is important to mention that for all the simulation scenarios,

e solve the optimization problem that does not include the

onstraint u i,t v i,t = 0 , for all i , t . However, all obtained solutions
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atisfy this constraint, hence they are optimal solutions to the

on-relaxed Problem 1. 

These simulations have been run using a 2.8 GHz CPU, with

 GB RAM. A rough study of the simulation time shows that each

teration of the simulation with 80 PEVs takes on average 22.9 sec-

nds, while each iteration of the simulation with 200 PEVs takes

n average 47.9 seconds. Notice that we are solving this problem

sing a single computer, which does not benefit from the paral-

elization that would occur should the algorithm be implemented

n a real scenario. This implies that the quadratic program for each

EV must be taking around 0.28 seconds to be solved. Let us recall

hat the non-PEV nodes do not have a significant computational

urden, since they only have to aggregate loads of their children

nd communicate the aggregate to their parent nodes. 

.2. Some practical considerations 

The implementation of the proposed algorithm requires a

articular bundle of communications and processing capacity to

arry out the mathematical operations described in Section 3 . 

On the communications side, the algorithm mostly requires a

arge amount of transmissions between nodes that are at a rela-

ively short distance within the distribution side of the grid. More-

ver, due to the hierarchical structure of the algorithm, it is ex-

ected that a single node does not have to exchange information

ith many others. The largest burden on communications will be

ue to the potentially high amount of iterations the algorithm may

equire. However, the volume of communications is also relatively

imple, since each node has to transmit at each instant only a vec-

or with T dimensions, and T is not expected to be too large. This

eans that the communication system can allow a low transmis-

ion rate and a relatively low distance between transmitter and re-

eiver. A low cost communication protocol such as Zigbee could be

andy for this application on the distribution side. Power-line car-

ier communication (PLCC), e.g., G3-PLC [26] could also be an alter-

ative to tackle the communication requirement of this algorithm. 

The transmission side of the grid requires some information

xchange to coordinate the initial energy price to provide the

istribution feeders, and this happens at the system level, po-

entially covering large distances. An ICCP protocol such as the

tandard IEC 60870-6 which is used to coordinate control center

t transmission level could be utilized for this purpose. 

On the computation side, computers located at the PEV nodes,

ither embedded in the PEV or in the charging station must be

ble to solve the quadratic programs that are required at each

teration of the algorithm. Quadratic programming problems can

e solved very efficiently by algorithms that can be executed even

ith the most inexpensive computation devices, e.g., Arduino,

aspberry-Pi, etc. Additionally, the interface between computation

nd communications can be easily handled. For instance, most

ndustrial devices, and also computers such as Arduino have

vailable low-cost communication modules for Zigbee protocol. 

Due to the convergence times of the proposed algorithms, we

elieve their applicability is mainly for energy arbitrage or provid-

ng energy reserves on a slow time scale. This is an issue that is

ommon to decentralized approaches, where the price of coordi-

ation is the convergence time. In addition, possible asynchronous

omputations may result into suboptimal performance. 

On the computation of the parameters η, κ� for all � ∈ M ,

he conditions provided by Proposition 2.1 , and Theorem 3.1 only

epend on parameters of the grid, such as the number of PEVs,

nd thermal limits on the components of the distribution circuits.

ince these parameters are embedded within the coordination

ignal provided by nodes in M , it means that the calculation can

e performed a priori, on the basis of estimates of the operating
onditions of the system (e.g., maximum number of PEVs, known

hermal limits, etc). 

. Conclusions 

We have presented a hierarchical protocol for a vehicle-2-grid

V2G) system in which a fleet of plug-in electric vehicles must

oordinate their charging/discharging strategies to minimize a cost

unction consisting in the price of the total energy provided by the

tility during a finite discrete-time horizon. The power flow leaves

he transmission side of the power grid and enters the distribution

ide. The power grid is modeled as a rooted tree, where nodes

epresent buses in distribution feeders, as well as PEVs. Our model

lso accounts for power capacity constraints in the distribution

ines. In order to account for these constraints, we use penalty

unctions. In particular, we characterize the size of the constraint

iolation in terms of the penalty parameters and the parameters of

he problem. This characterization provides a design methodology

or the choice of the penalization parameters in terms of a desired

erformance. The presented V2G hierarchical algorithm does not 

equire communication between PEVs, and the coordination signal

s transmitted from the utility down the tree network, while being

odified at each non-PEV node, until it reaches the PEVs. Then,

ach PEV uses it to iterate over its charging/discharging profile.

e show that the V2G hierarchical algorithm converges to the

ptimizer of the cost function given the network constraints.

imulations show the system behavior for a particular testbed. 

Several questions remain open for future work. First, our

attery models are linear, simplifying the computation of the

ptimal solutions of the associated problems. While our algorithm

resents a general guideline on how to deal with these models,

he consideration of other non-linear or linear parameter-varying

ystem battery models can affect significantly the optimality and

omputation of the solutions. As a future direction, we also aim to

ddress the power constraints in the elements subject to capacity

onstraints using non-differentiable penalty functions that allow

xact solutions of the original problem, but require a subgradient-

ased algorithm for the solution, with the ensuing complications

n the analysis. 

ppendix A. Proof of Lemma 2.1 

For the proof of Lemma 2.1 , we proceed by contradiction, by

howing that if u, v is a feasible solution to the relaxed version

f Problem 1, satisfying constraints (5b), (5f) , and (5g) strictly

nd such that (3d) holds as −P max 
� (t) + ε < d �,t ≤ P max 

� (t) , for

≥ u max (1 − max i ∈N αc 
i 
αd 

i 
) then it must also satisfy constraint

5h) in order for it to be optimal. 

Assume then that there is a unique pair i ∈ N and a t ∈ τ such

hat u i,t v i,t > 0 (the case of other nodes and times can be treated

ndependently.) Define a new profile ( ̄u , ̄v ) such that ū j,q = u j,q 
nd v̄ j,q = v j,q for all ( j , q ) � = ( i , t ), and ū i,t = γ max { 0 , u i,t −

(αc 
i 
αd 

i 
) −1 v i,t } , v̄ i,t = γ max { 0 , −(αc 

i 
αd 

i 
) u i,t + v i,t } . Observe that this

rofile satisfies the constraints (5c) and (5d) for all j ∈ N and q ∈ τ
nd for all γ ∈ (0, 1). In particular, we have ū i,t ̄v i,t = 0 . Since noth-

ng changes for all ( j , q ) � = ( i , t ), the constraints (5a) in the associ-

ted battery variables, z̄ j,q , also hold. The following can be proven:

1. First, since u i,t , v i,t > 0 , and αc 
i 
, αd 

i 
∈ (0 , 1) , it is easy to see

that: 

max { 0 , u i,t − (αc 
i α

d 
i ) 

−1 v i,t } 
− max { 0 , v i,t − (αc 

i α
d 
i ) u i,t } < u i,t − v i,t . (A.1) 

Therefore, for a sufficiently large γ ∈ ( a 1 , 1) we have that ū i,t −
v̄ i,t < u i,t − v i,t . 
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2. The constraints (5b) hold for all q < t (as they hold for (u, v ) )
and as well for q ≥ t . To see the latter, note that 

z̄ i,t = z i,t , 

z̄ i,q = z i,q + 

(γ − 1) 

βi 

(αc 
i u i,t − (αd 

i ) 
−1 v i,t ) , q ≥ t. 

Since the constraints (5b) hold strictly on z i , q by assumption,

we have that (5b) hold for z̄ i,q for all q if we take γ ∈ ( a 2 , 1).

The bound (5g) can be similarly treated. 

3. The bounds on the variables d̄ �,t , for � ∈ an( i ), may change as

well due to the change in ( ̄u , ̄v ) . We have that 

d̄ �,t = L �,t + 

∑ 

� ′ ∈M∩ des (� ) 

L � ′ ,t + 

∑ 

j∈ dN (� ) \{ i } 
(u j,t − v j,t ) 

+ 

{
γ (u i,t − (αc 

i 
αd 

i 
) −1 v i,t ) , if u i,t − (αc 

i 
αd 

i 
) −1 v i,t ≥ 0 , 

γ ((αc 
i 
αd 

i 
) u i,t − v i,t ) , if (αc 

i 
αd 

i 
) u i,t − v i,t ≤ 0 . 

We first analyze the lower bound of d̄ �,t . If u i,t −
(αc 

i 
αd 

i 
) −1 v i,t ≥ 0 , then γ (u i,t − (αc 

i 
αd 

i 
) −1 v i,t ) = γ (u i,t − v i,t +

(1 − (αc 
i 
αd 

i 
) −1 ) v i,t ) ≥ γ (u i,t − v i,t ) + γ (1 − (αc 

i 
αd 

i 
) −1 ) v max . If

u i,t − (αc 
i 
αd 

i 
) −1 v i,t ≤ 0 , then γ ((αc 

i 
αd 

i 
) u i,t − v i,t ) = γ ((−1 +

αc 
i 
αd 

i 
) u i,t + u i,t − v i,t ) ≥ γ (u i,t − v i,t ) + (−1 + αc 

i 
αd 

i 
) u max . There-

fore, in any case, for ε ≥ max i ∈N { (1 − (αc 
i 
αd 

i 
) −1 ) v max , (−1 +

αc 
i 
αd 

i 
) u max } we have that d̄ �,t ≥ d �,t + (γ − 1)(u i,t − v i,t ) − γ ε >

−P max 
� (t) + ε − γ ε ≥ −P max 

� (t) + ε − ε for sufficiently large

γ ∈ ( a 3 , 1). Similarly, for the upper bound, we have that, when

u i,t − (αc 
i 
αd 

i 
) −1 v i,t ≥ 0 , then γ (u i,t − (αc 

i 
αd 

i 
) −1 v i,t ) ≤ u i,t − v i,t 

for any γ ∈ (0, 1), and, when u i,t − (αc 
i 
αd 

i 
) −1 v i,t ≤ 0 , (and in the

worst case, u i,t − v i,t < 0 ) for γ ∈ ( a 3 , 1) sufficiently large we

have that d̄ �,t < P max 
� (t) . 

In all, from all the above cases, it is clear that, by choosing a

large enough γ ∈ (max { a 1 , a 2 , a 3 }, 1) we can find a new profile

( ̄u , ̄v ) that is feasible and such that ū i,t − v̄ i,t < u i,t − v i,t with

ū j,q − v̄ j,q = u j,q − v j,q for all other ( j , q ). This implies that the cost

function J( ̄u , ̄v ) < J(u, v ) , a contradiction with (u, v ) being optimal.

In particular, when αc 
i 
αd 

i 
= 1 , then one can repeat the previous

arguments by taking the constant ε = 0 to conclude that the result

holds for any profile which is an optimal solution to the relaxed

Problem 1 and an interior feasible point. 

Finally, if we directly simplify the lower-bound constraints

on d � , t and just consider upper bounds d �,t ≤ P max 
� (t) , then the

relaxation is exact for any choice of parameters. To see this,

assume again that there is an i ∈ N and t ∈ τ , such that u i,t v i,t > 0 ,

then we can construct a strictly better solution. Define ˆ u , ̂  v ,
such that ( ̂  u j,q , ̂  v j,q ) = (u j,q , v j,q ) for all ( j , q ) � = ( i , t ), and ˆ u i,t =
max { 0 , u i,t − (αc 

i 
αd 

i 
) −1 v i,t } , and 

ˆ v i,t = max { 0 , v i,t − (αc 
i 
αd 

i 
) u i,t } .

Again, it is not difficult to see that ˆ u j,q , ̂  v j,q allow the satisfac-

tion of the constraints (5a) through (5g) , for all j ∈ N and q ∈ τ .

Moreover, since u i,t , v i,t > 0 , and αc 
i 
, αd 

i 
∈ (0 , 1) , from (A.1) , we

have that ˆ u i,t − ˆ v i,t < u i,t − v i,t . Then, ˆ u , ̂  v is feasible to the relaxed

Problem 1 (with the new constraint ˆ d �,t ≤ P max 
� (t) for � ∈ M since

ˆ u i,t − ˆ v i,t < u i,t − v i,t ). In addition, it follows that 
∑ 

j∈N ( ̂  u j,t − ˆ v j,t ) <∑ 

j∈N (u j,t − v j,t ) , and 

∑ 

j∈N ( ̂  u j,q − ˆ v j,q ) = 

∑ 

j∈N (u j,q − v j,q ) , for all

q � = t , q ∈ τ . Given that the function C is convex and increasing, it

follows that J( ̂  u , ̂  v ) < J(u, v ) , which contradicts that u, v is optimal.

A1. Proof of Proposition 2.1 

First, consider an optimal solution ˆ u , ̂  v to Problem 2, and an

optimal solution u 	 , v 	 to the relaxed version of Problem 1. Notice

that: 

T ∑ 

t=1 

∑ 

� ∈M 

κ� �� (d 	 �,t ) = 0 , 
ince u 	 , v 	 satisfies all constraints (3d) and (3e) . Then, since ˆ u , ̂  v
s optimal for Problem 2, we have that: 

( ̂  u , ̂  v ) + 

T ∑ 

t=1 

∑ 

� ∈M 

κ� �� ( ̂  d �,t ) ≤ J(u 

	 , v 	 ) . (A.2)

his is because the optimal solutions u 	 , v 	 for Problem 1 are feasi-

le for Problem 2, therefore the cost of an optimizer of Problem 2

ower bounds the cost of u 	 , v 	 for Problem 2. Next, define λ	 
�,t ,

or all � ∈ M , as the optimal Lagrange multipliers associated to

he constraints in (3d) and (3e) in the relaxed version of Problem

, which exist by Assumption 2.2 (Slater’s condition). Let us define

lso the Lagrangian function: 

 (u, v , λ) � J(u, v ) + 

T ∑ 

t=1 

∑ 

� ∈M 

λ�,t (d �,t − P max 
� (t)) . 

y Duality Theory [27] and also Assumption 2.2 (Slater’s condition)

or the relaxed version of Problem 1, we have: 

(u 

	 , v 	 ) = L (u 

	 , v 	 , λ	 ) ≤ L ( ̂  u , ̂  v , λ	 ) . (A.3)

ow, let us proceed by contradiction, to show that 

ax { 0 , ˆ d �,t − P max 
� (t) } ≤ max η,t λ	 

η,t 

min ι κι

√ 

|M| T , (A.4)

olds for all � ∈ M and t ∈ τ . For the sake of clarity, let us

ntroduce the vector g (u, v ) ∈ R 

s , where s � |M| T , and with

omponents max { 0 , d �,t − P max 
� (t) } , for all � , t . 

Assume that ˆ u , ̂  v is such that max { 0 , ˆ d �,t − P max 
� (t) } > 

√ 

s ξ ,

here ξ � max η,t λ	 
η,t / min ι κι, for some � ∈ M , t ∈ τ . This is

quivalent to saying that ‖ g ( ̂  u , ̂  v ) ‖ ∞ 

> 

√ 

s ξ . Since 
√ 

s ξ > 0 , we can

ultiply on both sides by ‖ g ( ̂  u , ̂  v ) ‖ 1 and move 
√ 

s to the left-hand

ide to obtain 

‖ g ( ̂  u , ̂  v ) ‖ 1 ‖ g ( ̂  u , ̂  v ) ‖ ∞ 

/ 
√ 

s > ξ‖ g ( ̂  u , ̂  v ) ‖ 1 . By properties of

orms, we have that ‖ g ( ̂  u , ̂  v ) ‖ 2 ≥ ‖ g ( ̂  u , ̂  v ) ‖ ∞ 

, and also

 g ( ̂  u , ̂  v ) ‖ 2 ≥ ‖ g ( ̂  u , ̂  v ) ‖ 1 / √ 

s . Then, it follows that ‖ g ( ̂  u , ̂  v ) ‖ 2 2 ≥
 g ( ̂  u , ̂  v ) ‖ 1 ‖ g ( ̂  u , ̂  v ) ‖ ∞ 

/ 
√ 

s > ξ‖ g ( ̂  u , ̂  v ) ‖ 1 , which implies that: 

T ∑ 

t=1 

∑ 

� ∈M 

�( ̂  d �,t ) > 

T ∑ 

t=1 

∑ 

� ∈M 

ξ max { 0 , ˆ d �,t − P max 
� (t) } 

≥
T ∑ 

t=1 

∑ 

� ∈M 

max η,t λ	 
η,t 

min ι κι
( ̂  d �,t − P max 

� (t)) . 

y multiplying both sides of the previous equation by min ικι, it

s easy to see that: 

T 
 

t=1 

∑ 

� ∈M 

κ� �( ̂  d �,t ) > 

T ∑ 

t=1 

∑ 

� ∈M 

λ	 
�,t ( ̂

 d �,t − P max 
� (t)) , 

hich in turn implies that: 

 ( ̂  u , ̂  v , λ	 ) < J( ̂  u , ̂  v ) + 

T ∑ 

t=1 

∑ 

� ∈M 

κ� �� ( ̂  d �,t ) . (A.5)

rom Equations (A .2), (A .3) , and (A .5) , it follows that

(u 	 , v 	 ) < J(u 	 , v 	 ) , a contradiction. Hence, (A.4) must hold

or all � ∈ M , t ∈ τ . 

Now, from [28, Chapter 10] , we have that: 

ax 
�,t 

λ	 
�,t ≤

1 

γ
(J( ̄u , ̄v ) − J̄ ) , 

here J̄ = J( ̃  u , ̃  v ) , ˜ u , ̃  v is a solution to the relaxed version of Prob-

em 1, without the constraints (3d) and (3e) , ū , ̄v is a Slater vector

f Problem 1, and γ � min �,t P 
max 
� (t) − d̄ �,t . Note that by definition

f Slater vector, u † , v † as described in Assumption 2.2 is a Slater
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[  
ector of Problem 1 and that ε ≤γ . Since C is increasing, we have

hat: 

T 
 

t=1 

C(−P max 
r (t)) ≤ J( ̄u , ̄v ) ≤

T ∑ 

t=1 

C(P max 
r (t)) , 

rom (3e) . Thus, defining J max = 

∑ T 
t=1 C(P max 

r (t)) and J min =
 T 
t=1 C(−P max 

r (t)) , and using that γ ≥ ε, we have that 

ax 
�,t 

λ	 
�,t ≤

1 

ε 
(J max − J min ) . (A.6) 

ow, from (A.4) , we have that 

ˆ 
 �,t − P max 

� (t) ≤ max λ	 
η,t 

min ι κι

√ 

T |M| . 
lugging into the inequality for (A.6) and the definition of κ� of

he proposition, we have that 

ˆ 
 �,t − P max 

� (t) ≤ (J max − J min ) 
√ 

T |M| σ min ι P max 
ι (t) 

ε 
√ 

T |M| (J max − J min ) 

≤ σP max 
� (t) , 

rom which the result follows. 

ppendix B. Optimality characterization [27] 

For the feasible convex optimization problem: 

inimize: f (x ) , 

subject to: 

x ∈ X, 

ith x ∈ R 

n , x 	 is an optimizer if and only if: 

f (x 	 ) � (x − x 	 ) ≥ 0 , 

or all x ∈ X . 

1. Auxiliary results 

emma B.1 (Counting of edges in T ). The equality: ∑ 

 ∈M\{ r } 

∑ 

i ∈ dN (� ) 

A i B � = 

∑ 

i ∈N 

∑ 

� ∈ an (i ) \{ r } 
A i B � , 

olds for any terms A i , B � . 

roof. It is easy to show that each of the summands accounts for

ne path between each PEV and each of its ancestors. �
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