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Abstract— This paper considers a class of real-time decision
making problems to minimize the expected value of a function
that depends on a random variable ξ under an unknown
distribution P. In this process, samples of ξ are collected
sequentially in real time, and the decisions are made, using
the real-time data, to guarantee out-of-sample performance. We
approach this problem in a distributionally robust optimization
framework and propose a novel ONLINE DATA ASSIMILATION
ALGORITHM for this purpose. This algorithm guarantees the
out-of-sample performance in high probability, and gradually
improves the quality of the data-driven decisions by incorpo-
rating the streaming data. We show that the ONLINE DATA
ASSIMILATION ALGORITHM guarantees convergence under the
streaming data, and a criteria for termination of the algorithm
after certain number of data has been collected.

I. INTRODUCTION
Online data assimilation is of benefit in many applications

that require real-time decision making under uncertainty,
such as optimal target tracking, sequential planning prob-
lems, and robust quality control. In these problems, the
uncertainty is often represented by a multivariate random
variable that has an unknown distribution. Among avail-
able methods, distributionally robust optimization (DRO)
has attracted attention due to its capability to handle data
with unknown distributions while providing out-of-sample
performance guarantees with limited uncertainty samples. To
quantify the uncertainty and make decisions that guarantee
the performance reliably, one often needs to gather a large
number of samples in advance. Such requirement, however,
is hard to achieve under scenarios where acquiring samples
is expensive, or when real-time decisions must be made. Fur-
ther, when the data is collected over time, it remains unclear
what the best the procedure is to assimilate the data in an
ongoing optimization process. Motivated by this, this work
studies how to incorporate finitely streaming data into a DRO
problem, while guaranteeing out-of-sample performance via
the generation of time-varying certificates.

Literature Review: Optimization under uncertainty is a
popular research area, and as such available methods include
stochastic optimization [1] and robust optimization [2]. Re-
cently, data-driven distributionally robust optimization has
regained popularity thanks to its out-of-sample performance
guarantees, see e.g. [3]–[6] and references therein. In this
setup, one defines a set of distributions or ambiguity set,
which contains the true distribution of the data-generating
system with high probability. Then, the out-of-sample per-
formance of the data-driven solution is obtained as the worst-
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case optimization over the ambiguity set. An attractive way
of designing these sets is to consider a ball in the space
of probability distributions centered at a reference or most-
likely distribution constructed from the available data. In
the space of distributions, the popular distance metric is
the Prokhorov metric, φ-divergence and the Wasserstein dis-
tance [3], [5]. Here, following the paper [3], which proposes
a distributed optimization algorithm for multi-agent settings,
we use the Wasserstein distance as it leads to a tractable
reformulation of DRO problems. However, available algo-
rithms in [3], [5] do not consider the update of the data-
driven solution over time, which serves as the focus of this
work. In terms of the algorithm design, our work connects to
various convex optimization methods [7] such as the Frank-
Wolfe (FW) Algorithm (e.g., conditional gradient algorithm),
the Subgradient Algorithm, and their variants, see e.g. [8],
[9] and references therein. Our emphasis on the convergence
of the data-driven solution obtained through a sequence of
optimization problems contrasts with typical optimization
algorithms developed for single (non-updated) problems.

Statement of Contributions: Our starting point is a distri-
butionally robust optimization problem formulation setting
of [3], [5], where we further consider that the limited real-
izations of the multivariate random variable in the problem
are revealed and collected sequentially over time. As the
probability distribution of the random variable is unknown,
we aim to find and update a real-time data-driven solution
based on streaming data. To guarantee the performance of
the data-driven solution with certain reliability, we follow a
DRO approach to solve a worst-case optimization problem
that considers all the probability distributions in ambiguity
sets given as a neighborhood of the empirical distribution
under the Wasserstein metric. Our first contribution is the
generation of such performance guarantee for any real-time
data-driven solution. We achieve this by first finding an
equivalent convex optimization problem over a simplex, and
then specializing the algorithm for efficiently generating a
performance certificate of the data-driven solution with a
certain reliability requirement. Based on the fact that the
performance guarantee of data-driven solution with high
probability, our second contribution is the design of a scheme
to find an optimal data-driven solution with the best perfor-
mance guarantee under the same reliability. As new data is
revealed and collected sequentially, we specialize the pro-
posed scheme to assimilate the streaming data. We show that
the resulting ONLINE DATA ASSIMILATION ALGORITHM
is provably correct in the sense that the reliability of the
out-of-sample performance guarantee for the generated data-
driven solution converges to 1 as the number of data samples
grows to infinity, and the data-driven solution with certain
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performance guarantee is available any time as soon as the
algorithm finish generating the initial certificate. A conver-
gence analysis of the proposed algorithm is given, under
a user-defined optimality tolerance. We finally illustrate the
performance of the proposed algorithm in simulation.

II. PRELIMINARIES

Notations: Let Rm, Rm≥0 and Rm×d denote respectively the
m-dimensional Euclidean space, the m-dimensional nonneg-
ative orthant, and the space of m× d matrices, respectively.
We use the shorthand notations 0m for the column vector
(0, · · · , 0)

> ∈ Rm, 1m for the column vector (1, · · · , 1)
> ∈

Rm, and Im ∈ Rm×m for the identity matrix. We let
x ∈ Rm denote a column vector with the dimension m
and x> represents its transpose. We say a vector x ≥ 0,
if all its the entries are nonnegative. We use subscripts to
index vectors and superscripts to indicate the component of
vector, i.e., xk ∈ Rm for k ∈ {1, 2, . . . , n} and xk :=

(x1
k, . . . ,x

m
k )
>. We use xi:j to denote the column vector

(xi,xi+1, . . . ,xj)
> ∈ Rj−i+1 and (x; y) ∈ Rm+d indicates

the concatenated column vector from x ∈ Rm and y ∈ Rd.
An 1-norm of the vector x ∈ Rm is denoted by ‖x‖. For
matrices A ∈ Rm×d and B ∈ Rp×q , we let A ⊕ B denote
their direct sum. The shorthand notation ⊕mi=1Ai represents
A1 ⊕ · · · ⊕ Am. Given a set of points I in Rm, we let
conv(I) indicate its convex hull. The gradient of a real-
valued function f : Rm → R is written as ∇xf(x). The
ith component of the gradient vector is denoted by ∇if(x).
We call the function f proper on Rm if f(x) < +∞ for at
least one point x ∈ Rm and f(x) > −∞ for all x ∈ Rm.
We use dom f to denote the effective domain of the proper
function f , i.e., dom f := {x ∈ Rm | f(x) < +∞}. We say
a function F : X × Y → R is convex-concave on X × Y if,
for any point (x̃, ỹ) ∈ X × Y , x 7→ F (x, ỹ) is convex and
y 7→ F (x̃,y) is concave.

Numerical Optimization Methods: There are mainly two
types of Numerical Optimization methods that serve as
the main ingredients of our ONLINE DATA ASSIMILATION
ALGORITHM. One type is given by Frank-Wolfe Algorithm
(FWA) variants and the other is the Subgradient Algorithm.
For the Subgradient Algorithm please refer to [10], [11].

The Frank-Wolfe Algorithm over a unit simplex. To solve
convex programs over a unit simplex, here we introduce
the FWA Algorithm following [8], [9]. We define the m-
dimensional unit simplex as ∆m := {λ ∈ Rm | 1m

>λ =
1, λ ≥ 0}. Let Λm be the set of all extreme points for
the simplex ∆m. Consider the minimization of a convex
function f(x) over ∆m; we refer to this problem by (∗) and
denote by x? an optimizer of (∗). We refer to a xε as an ε-
optimal solution for (∗), if xε ∈ ∆m and f(xε)−f(x?) ≤ ε.
We define a FW search point s(k) for the current iteration
k at the feasible point x(k), if s(k) is an extreme point
such that s(k) ∈ argminx∈∆m

∇f(x(k))
>

(x − x(k)). With
this search point we define the FW direction at x(k) by
d

(k)
FW := s(k) − x(k). The classical Frank-Wolfe Algorithm

solves the problem (∗) to ε-optimality by iteratively finding a
FW direction and then solving a line search problem over this
direction until an ε-optimal solution x(k) is found, certified

by η(k) := −∇f(x(k)) · d(k)

FW ≤ ε. Away-step Frank-Wolfe
(AFW) Algorithm is an extension of the FWA we used in the
following sections, and a linear convergence rate property of
the AFW Algorithm is stated in the online version of this
paper [12] for completeness.

III. PROBLEM DESCRIPTION
Consider a decision-making problem given by

inf
x∈Rd

EP[f(x, ξ)], (P)

where the decision variable x on Rd is to be determined, the
random variable ξ : Ω → Rm is induced by the probability
space (Ω,F ,P), and the expectation of f is taken w.r.t. the
unknown distribution P ∈ M(Z). It is not possible to
evaluate the objective of (P) under x because P is unknown.

This section sets up the framework of an efficient ONLINE
DATA ASSIMILATION ALGORITHM that adapts the decision-
making process by using streaming data, i.e., independent
and identically distributed (iid) realizations of the random
variable ξ. Then, we adapt the distributionally robust op-
timization approach following [3], [5], to complete the
framework. We omit all proofs in the paper for simplicity
and we just report an outline of the main ideas of the paper.
Please see the online version [12] for more details.

Let {x̂(r)}∞r=1 be a sequence of decisions where for each
iteration r the decision x̂(r) is feasible for (P). In our ONLINE
DATA ASSIMILATION ALGORITHM we generate {x̂(r)}∞r=1

while sequentially collecting iid realizations of the random
variable ξ under P, denoted by ξ̂n, n = 1, 2, . . .. This defines
a sequence of streaming data sets, Ξ̂n ⊆ Ξ̂n+1, for each
n. W.l.o.g. we assume that each data set Ξ̂n+1 consists of
just one more new data point, i.e., Ξ̂n+1 = Ξ̂n ∪ {ξ̂n+1}
and Ξ̂1 = {ξ̂1}. The time between updates of Ξ̂n and Ξ̂n+1

corresponds to certain time period, which we refer to as the
nth time period. The decision sequence obtained during this
period is a subsequence of {x̂(r)}∞r=1, labeled by {x̂(r)}rn+1

r=rn .
The objective of our algorithm is to make real-time decisions
for (P) that have a potentially low objective value, while
adapting the information from the current data set Ξ̂n.

To quantify the quality of the decisions {x̂(r)}∞r=1, we
introduce the following terms. For each r and the nth time
period we call the decision x̂(r) ∈ Rd a proper data-
driven solution of (P), if x̂(r) is feasible and its out-of-
sample performance, defined by EP[f(x̂(r), ξ)], satisfies the
following performance guarantee:

Pn(EP[f(x̂(r), ξ)] ≤ Ĵn(x̂(r))) ≥ 1− βn, (1)

where the certificate Ĵn is a function of x̂(r) that indicates
the goodness of the performance under the data set Ξ̂n. The
reliability (1 − βn) ∈ (0, 1) ⊂ R governs the choice of the
solution x̂(r) and the resulting certificate Ĵn(x̂(r)). Finding
an approximate certificate is much easier than finding an
exact certificate Ĵn in practice. Based on this, we call a
solution x̂(r) ε1-proper, if it satisfies (1) with a approximate
certificate, Ĵε1n , such that Ĵn(x̂(r)) − Ĵε1n (x̂(r)) ≤ ε1. The
certificates Ĵn(x̂(r)) and Ĵε1n (x̂(r)), which depend on x̂(r)

and the data set Ξ̂n, provide an upper bound to the optimal
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value of (P) with high confidence (1 − βn) and are to be
constructed carefully.

In each time period n, given a reliability level 1 − βn,
our goal is to approach to an ε1-proper data-driven solution
with a low certificate. Motivated by this we call any proper
data-driven solution ε2-optimal, labeled as x̂ε2n , if Ĵn(x̂ε2n )−
Ĵn(x) ≤ ε2 for all x ∈ Rd. Then, for any ε2-optimal and
ε1-proper data-driven solution x̂ε2n with certificate Ĵε1n (x̂ε2n )
and ε1 � ε2, we have the following performance guarantee:

Pn(EP[f(x̂ε2n , ξ)] ≤ Ĵε1n (x̂ε2n ) + ε1) ≥ 1− βn. (2)

We describe now the procedure of the ONLINE DATA
ASSIMILATION ALGORITHM to solve (P). Given tolerance
parameters ε1 and ε2, a sequence of data sets {Ξ̂n}Nn=1 and
strictly decreasing confidence levels {βn}Nn=1 with N →∞
such that

∑∞
n=1 βn < ∞, the algorithm aims to find a

sequence of ε2-optimal and ε1-proper data-driven solutions,
{x̂ε2n }Nn=1, associated with the sequence of the certificates
{Ĵε1n (x̂ε2n )}Nn=1 so that the performance guarantee (2) holds
for all n. Additionally, as the data streams to infinity, i.e.,
n → ∞ with N = ∞, there exists a large enough n0

such that the algorithm terminates after processing the data
set Ξ̂n0

. The algorithm returns a final data-driven solution
x̂ε2n0

such that the performance holds almost surely, i.e.,
P∞(EP[f(x̂ε2n0

, ξ)] ≤ Ĵε1n0
(x̂ε2n0

) + ε1) = 1, and meanwhile
guarantees the quality of the certificate Ĵε1n0

(x̂ε2n0
) to be close

to the optimal objective value of the Problem (P).
To achieve this, consider that the data set Ξ̂n has been

received. We then start by cheaply constructing a sequence
of data-driven solutions x̂(r) with r ≥ rn, based on the
data set Ξ̂n. After a finite number of iterations, if no new
data has been received, the algorithm reaches r = rn+1

such that x̂(rn+1) = x̂ε2n is ε2-optimal, i.e., Jε1n (x̂(rn+1)) is
(ε1 + ε2)-close to J?n := Ĵn(x̂?n) with x̂?n ∈ argminx Ĵn(x).
After a new data point is received, the algorithm finds the
next ε2-optimal data-driven solution x̂ε2n+1 and its certificate
Ĵε1n+1(x̂ε2n+1) with higher reliability 1 − βn+1. In this way,
online data can be assimilated over time while refining
the constructed ε2-optimal data-driven solutions {x̂ε2n }∞n=1

with corresponding certificates {Ĵε1n (x̂ε2n )}∞n=1 that guarantee
performance with high confidence {1− βn}∞n=1.

When the algorithm receives new data set Ξ̂n+1 before
reaching to r = rn+1, it safely starts from the current data-
driven solution x̂(r). The algorithm then proceeds similarly
on the data set Ξ̂n+1 by updating the subsequence index
rn+1 to the current r.

Next, we focus on how to design the certificates based on
the following assumption for f :

Assumption III.1 (Convexity-concavity and coercivity)
The known proper function f : Rd × Rm → R, (x, ξ) 7→
f(x, ξ) is continuously differentiable, convex in x, concave
in ξ and f(x, ξ̃)→ +∞ as ‖x‖ → +∞ for all ξ̃ ∈ Rm.

Certificate design via DRO theory: To design a certificate
Ĵn(x̂) for a given data-driven solution x̂, one can first use
the data set Ξ̂n from P to estimate an empirical distribution,
P̂n, and let EP̂n [f(x̂, ξ)] be the candidate certificate for the

performance guarantee (1). However, such certificate only
results in an approximation of the out-of-sample performance
if P is unknown and (1) cannot be guaranteed in probability.
Following [3], [5], we are to determine an ambiguity set P̂n
containing all the possible probability distributions supported
on Z ⊆ Rm that can generate Ξ̂n with high confidence.
Then with the given feasible solution x̂, it is plausible to
consider the worst-case expectation of the out-of-sample
performance for all distributions contained in P̂n. Such
worst-case distribution offers an upper bound for the out-
of-sample performance with high probability.

Denote by Mlt(Z) ⊂ M(Z) the set of light-tailed prob-
ability measures in M(Z), we make following assumption:

Assumption III.2 (Light tailed unknown distributions) It
is assumed that P ∈ Mlt(Z), i.e., there exists an exponent
a > 1 such that: b := EP[exp(‖ξ‖a)] <∞.

Assumption III.2 validates the modern measure concen-
tration result [13, Theorem 2] on Mlt(Z), which provides
an intuition for considering the Wasserstein ball Bε(P̂n)
of center P̂n and radius ε as the ambiguity set P̂n. Then
equipped with the Wassenstein ball, we are able to provide
the certificate that ensures the performance guarantee in (1)
for any sequence of data-driven solutions {x̂(r)}∞r=1, by
Ĵn(x̂(r)) := supQ∈P̂n EQ[f(x̂(r), ξ)].

Worst-case distribution reformulation: To get the certifi-
cate Ĵn(x̂(r)), one needs to solve an infinite dimensional
optimization problem, which is generally hard. Luckily,
with an extended version of the strong duality results for
moment problem [14, Lemma 3.4], we can reformulate the
optimization problem for Ĵn(x̂(r)) into a finite-dimensional
convex programming problem:

Ĵn(x̂
(r)) := max

y1,...,yn∈Rm
1

n

n∑
k=1

f(x̂(r), ξ̂k − yk),

s. t.
1

n

n∑
k=1

‖yk‖ ≤ ε(βn),
(P1(r)

n )

where ε(βn) is the radius of of Bε(βn) as calculated in [12].
Given an ε1-optimal solution (yε11 , . . . ,y

ε1
n ) of (P1(r)

n ), we
denote a finite atomic probability measure at x̂(r) in Bε(βn)

by Qε1n (x̂(r)) := 1
n

∑n
k=1 δ{ξ̂k−yε1k }

. Then, Qε1n is a worst-

case distribution that can generate the data set Ξ̂n with high
probability (no less than (1− βn)).

The concavity requirement in Assumption III.1 ensures
that (P1(r)

n ) is a convex problem. Failure of Assumption III.1
may require us to find a relaxed problem of (P1(r)

n ) in order
for efficiently generating Ĵn(x̂(r)) in the next section.

IV. CERTIFICATE GENERATION
Given the tolerance ε1 and any feasible solution x̂(r),

we present in this section the Certificate Generation Al-
gorithm (CGA) for efficiently obtaining Ĵε1n (x̂(r)) and the
ε1 worst-case distribution, Qε1n (x̂(r)) of an ε1-proper data-
driven solution x̂(r) over time, under the sequence of the
data sets {Ξ̂n}Nn=1. To achieve this, we first reformulate
Problem (P1(r)

n ) to a convex optimization problem over a
simplex. Then, we design the CGA to solve the customized
problem to an ε1-optimal solution efficiently.
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For online implementation we have the following assump-
tion on the computation of the gradient of the function f :

Assumption IV.1 (Cheap access of the gradients) For any
x ∈ Rd, the gradient of the function hx : Rm → R for
hx(y) := f(x,y) can be accessed cheaply.

In the nth time period with the data set Ξ̂n, we consider
the following convex optimization problem over ∆2mn:

max
v∈R2mn

1

n

n∑
k=1

hrk((Anv)(k−1)m+1:km),

s. t. v ∈ ∆2mn,

(P2(r)
n )

where for each k ∈ {1, . . . , n}, ξ̂k ∈ Ξ̂n and x̂(r) ∈ Rd, we
define hrk : Rm → R as

hrk(y) := f(x̂(r), ξ̂k − y),

and the matrix An := [⊕ni=1Im,− ⊕ni=1 Im] ∈ Rmn×2mn

where the first mn columns of An constitute the natural basis
for the space Rmn. The simplex is defined by ∆2mn := {v ∈
Rmn | 12mn

>v = nε(βn), v ≥ 0} and we denote by Λ2mn

the set of all the extreme points for the simplex ∆2mn.
One can prove that solving (P1(r)

n ) is equivalent to solv-
ing (P2(r)

n ) for any feasible solution x̂(r) in every time period
n, we refer to the online version [12] for details.

The Frank-Wolfe Algorithm variants, such as the Simpli-
cial Algorithm [8] and the AFW algorithm [9], are known
to be well suited for problems of the form (P2(r)

n ). The
advantage of these is that they can handle the constraints of
Problem (P2(r)

n ) via linear programming subproblems (LP)
that result from the way in which the FW search point is
found in [12, Section 2]. Intuitively, the following is done.
For a number of iterations l, the following problems are
solved alternatively:

max
v∈R2mn

1

n

n∑
k=1

〈
∇hrk(y

(l−1)
k ), · · ·

(Anv)(k−1)m+1:km − y
(l−1)
k

〉
,

s. t. v ∈ ∆2mn,

(LP(l))

max
γ∈RT+1

1

n

n∑
k=1

hrk(

T∑
i=0

γiỹ
(i)
k ),

s. t. γ ∈ ∆T .

(CP(l))

Notice that the search points generated for the linear sub-
problem (LP(l)) at iteration l are the extreme points of
the feasible set ∆2mn. We denote by I

(l)
n the set of these

points. Considering the convex hull of I(l)
n , parametrized by

the convex combination coefficients γ of the points in I
(l)
n ,

an implicit feasible set conv(I
(l)
n ) in a lower dimensional

space can be constructed. Motivated by this, our Certificate
Generation Algorithm iteratively solves the linear subprob-
lem (LP(l)), enlarges the implicit feasible set conv(I

(l)
n ), and

then searches a maximizer of the objective function of (P2(r)
n )

over conv(I
(l)
n ) (represented as ∆T in subproblem (CP(l))).

This process is repeated to the next iteration l + 1, and
follows until an ε1-optimal solution is found. Later we will

see that the set I(l)
n allows to generate the certificate when

assimilating data. We call this set the candidate vertex set.
For the above problems, notice that the subproblem (LP(l))

maximizes a linear function over a simplex, therefore it is
computationally cheap and an optimizer v(l) is equivalently
computed by choosing a sparse vector with only one positive
entry, i.e., an extreme point of the feasible set of (LP(l)), such
that the nonzero component of v(l) has the largest weight in
the linear cost function of Problem (LP(l)).

We refer to the online version of this paper [12] for
complete description of the Certificate Generation Algorithm
(denoted by [12, Algorithm 4]) and its finite convergence to
achieve Ĵε1n (x̂(r)) and Qε1n (x̂(r)) for any data-driven solution
x̂(r) in the nth time period with the data set Ξ̂n.

The worst-case computational bound of the Certificate
Generation Algorithm at the iteration l + 1, associated
with the candidate solution (y

(l)
1 , . . . ,y

(l)
n ), is Ĵn(x̂(r)) −

Ĵη
(l+1)

n (x̂(r)) ≤ 2mnκlρ, where κ := 1− µf
4Cf
∈ (0, 1) ⊂ R

is related to local strong convexity of f over ∆2mn, and
ρ := Ĵn(x̂(r)) − Ĵη

(1)

n (x̂(r)) ≤ η(1) quantifies the initial
distance of the objective function Ĵn and Ĵη

(1)

n at x̂(r). In
other words, given the tolerance ε1, in the worst case we
need at least l ≥ φ(n) := logκ( ε1

2mnρ ) computational steps
to find Ĵε1n (x̂(r)).

However, how to generate Ĵε1n (x̂(r)) and Qε1n (x̂(r)) online
is unclear for each data-driven solution x̂(r). This is because
that as the time period n moves, we need to not only
obtain Ĵε1n (x̂(r)) and Qε1n (x̂(r)) sufficiently fast, but also
finding them by solving the Problem (P2(r)

n ) under a different
data set Ξ̂n. As the size of Ξ̂n grows, the dimension of
the Problem (P2(r)

n ) increases. To deal these challenges, our
Certificate Generation Algorithm exploits the relationships
among the Problems (P2(r)

n ) with different data set Ξ̂n by
adapting the candidate vertex set I(l)

n .
When the average data streaming rate is slower than

the computational bound φ(1), we claim that Certificate
Generation Algorithm can always find the certificate for each
data set Ξ̂n. This is because in each time period n on average,
we only have 2mn extreme points, and 2m(n − 1) has
been explored due to the adaptation of the candidate vertex
set I(0)

n . This indicates that in the worst-case situation the
average data streaming rate should be lower than this value,
in order to efficiently update the certificate for the sequence
of the data-driven solutions.

V. AN ε2-OPTIMAL PERFORMANCE GUARANTEE
In this section, we approach the construction of a sequence

of the ε2-optimal data-driven solutions {x̂ε2n }∞n=1, associated
with ε2-lowest certificates {Ĵε1n (x̂ε2n )}∞n=1 over time, under
the sequence of the data sets {Ξ̂n}∞n=1. Specifically in the nth

time period, we start from x̂(r) := x̂(rn) with its associated
ε1-optimal certificate Ĵε1n (x̂(r)), and as the iteration r grows,
we are to find a sequence of ε̂1-proper data-driven solutions,
{x̂(r)}rn+1

r=rn , which converge to x̂ε2n quickly and result in
Ĵε1n (x̂ε2n ). We use a Subgradient Algorithm to obtain x̂ε2n , via
a valid ε1-subgradient of the certificate function Ĵε1n (x̂(r)),
which denoted by gε1n (x̂(r)) and can be computed as shown
in the extended version [12].

1964

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 27,2023 at 13:25:36 UTC from IEEE Xplore.  Restrictions apply. 



However, for every time we generate a new data-driven so-
lution x̂(r+1), the ε1-optimal extreme distribution Q̂ε1n (x̂(r))
associated with the last solution x̂(r) may not be a valid
ε1-optimal extreme distribution for x̂(r+1). To reduce the
number of computations needed to obtain the new certificate
for x̂(r+1), we denote by gε

(r)

n (x̂(r)) the ε(r)-subgradient at
x̂(r), where ε(r) may be greater than ε1 for each r. Then by
properly designing a sequence {ε(r)}, upper bounded by ε̂1,
and estimating the ε(r)-optimal extreme distributions, we will
achieve a suboptimal proper data-driven solution efficiently.

Here, we employ the ε̂1-Subgradient Algorithm with
ε̂1 � ε1, the divergent but square-summable step
size rule, and scaled direction as follows: x̂(r+1) =
x̂(r) − α(r)ĝε̂1n (x̂(r))/max{‖ĝε̂1n (x̂(r))‖ , 1}. The estimated
ε̂1-subgradient ĝε̂1n (x̂(r)) at each iteration r is constructed
and updated via the following considerations. Every time we
generate the ε1-optimal certificate from the Certificate Gener-
ation Algorithm at iteration r, the estimated ε̂1-subgradient is
constructed by Q̂ε1n (x̂(r)) using lemma for the easy access of
the subgradients [12], i.e., gε1n (x̂(r)) ∈ ∂ε̂1 Ĵn(x̂(r)). During
the execution of the ε̂1-Subgradient Algorithm, we check for
the ε̂1-optimality of the certificate generated from Q̂ε1n (x̂(r))
at each subsequent iteration r̂, using [12, Algorithm 3].
If the obtained suboptimality gap is such that η > ε̂1 at
r̂ > r, we generate a new ε1-optimal distribution Q̂ε1n (x̂(r̂))
via Certificate Generation Algorithm and estimate the ε̂1-
subgradient using Q̂ε1n (x̂(r̂)). Otherwise, the certificate at
x̂(r̂) is constructed using Q̂ε1n (x̂(r)).

From the above construction, we see that each ε(r),
associated with a ĝε̂1n (x̂(r)), is such that ε(r) ≤ ε̂1. Then,
we have the following lemma for the convergence of the
ε̂1-Subgradient Algorithm in the nth time period.

Lemma V.1 (Convergence of the ε̂1-Subgradient Algo-
rithm to the ε2-optimal solution given Ξ̂n) In each time
period n with an initial data-driven solution x̂(rn), assume
the subgradients defined by ĝεn(x̂(r)) are uniformly bounded,
i.e., there exists a constant L > 0 such that ‖ĝεn(x̂(r))‖ ≤ L
for all r ≥ rn and ε ≤ ε̂1. Let µ := max{L, 1}. Given a
predefined ε2 > 0, and let the certificate tolerance ε1 and the
subgradient bound ε̂1 such that 0 < ε1 � ε̂1 < ε2/µ, then
there exists a large enough number r̄ such that the designed
ε̂1-Subgradient Algorithm has the following performance
bounds:

min
k∈{rn,...,r}

{Ĵn(x̂(k))} − Ĵn(x̂?n) ≤ ε2, ∀ r ≥ r̄,

and terminates at the iteration rn+1 := r̄ with an ε2-optimal
solution under the data set Ξ̂n.

VI. DATA ASSIMILATION
We now describe a full algorithm to assimilate data on-

line. The whole ONLINE DATA ASSIMILATION ALGORITHM
starts from some random initial data-driven solution. Then,
for each given set of data points, we first generate its
certificate via Certificate Generation Algorithm, after which
an ε-proper data-driven solution is obtained, then we execute
the Subgradient Algorithm to achieve a lower certificate.
During the last set of iterations, the certificate may be lost
and Certificate Generation Algorithm may have to be rerun

again, and resume the Subgradient Algorithm after obtaining
a valid certificate. If no data points come in, the algorithm
terminates as soon as the Subgradient Algorithm terminates.

When there is streaming data, the algorithm needs to
incorporate new data points every time they become avail-
able. Because of this, the feasible set of the Problem (P1(r)

n )
changes. This affects the dimension of Problem (P1(r)

n ),
which grows by m, and results into an increase of the
dimension of (LP(l)) by 2m. Second, the reliability increase
from βn to βn+1 results into a smaller radius ε(βn+1) of the
Wasserstein ball Bε(βn+1).

Depending on the stage the new data point comes in,
different strategies for generating initial point that is feasible
for the new optimization problem can be considered. When
data comes in during the execution of the ε-Subgradient
Algorithm at iteration r, we use a current best ε̂1-proper
data-driven solution as the initial data-driven solution for the
ε2-optimal data-driven solution x̂ε2n+1, i.e., x̂(rn+1) := x̂best

n ∈
argmink∈{rn,...,r}{Ĵn(x̂(j))}. The other initial data, such as
(y

(0)
1 , . . . ,y

(0)
n ), I(0)

n and {ỹ(i)
k }i∈I(0)n

, can be constructed
following the same idea as when data point comes in during
the execution of Certificate Generation Algorithm, the details
of which are in [12]. By such scheme the online data can be
assimilated into sequence of optimization problems [12, the
Algorithm 5].

The ONLINE DATA ASSIMILATION ALGORITHM has the
anytime property, meaning that the performance guarantee is
provided anytime, as soon as the first ε1-proper data-driven
solution is found. The algorithm then tries to make decisions
that achieve lower certificates with higher reliability until
we achieve the lowest possible certificate and guarantee the
performance almost surely.

The transient behavior of the ONLINE DATA ASSIMILA-
TION ALGORITHM is naturally affected by the data streaming
rate and the rate of convergence of intermediate algorithms
(the assimilation rate). To further describe the effect of the
data streaming rate, we call the data set stream {Ξ̂n}Nn=1

sufficiently slow in the nth time period, if we can find an x̂ε2n
in the ε̂1-Subgradient Algorithm during the time period n.
When the data streaming rate and assimilation rate are the
same, and they are sufficiently slow for all n, the ONLINE
DATA ASSIMILATION ALGORITHM guarantees to find a low
certificate with a good data-driven solution as established by
the following finite convergence result.

Theorem VI.1 (Finite convergence of the ONLINE DATA
ASSIMILATION ALGORITHM) Given any tolerance ε1, ε2,
ε3 > 0 and sufficiently slow data streaming sets {Ξ̂n}∞n=1.
Then, there exists a large enough number n0(ε3) > 0, such
that the algorithm terminates in finite time with a sequence
of ε2-optimal ε1-proper data-driven solutions {x̂ε2n }

n0
n=1 as-

sociated with the sequence of the certificates {Ĵε1n (x̂ε2n )}n0
n=1

so that the performance guarantee (2) holds for all n ≤ n0.
Moreover, we have a guaranteed ε2-optimal and ε1-proper
data-driven solution x̂ε2n0

and a certificate Ĵε1n0
(x̂ε2n0

) such that
the performance guarantee holds almost surely, i.e.,

P∞(EP[f(x̂
ε2
n0
, ξ)] ≤ Ĵε1n0

(x̂ε2n0
) + ε1) = 1,
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and meanwhile the quality of the designed certificate
Ĵε1n0

(x̂ε2n0
) is guaranteed, i.e., for all the rest of the data sets

{Ξ̂n}∞n=n0
, any element in the desired certificate sequence

{Ĵε1n (x̂ε2n )}∞n=n0
satisfies

sup
n≥n0

Ĵε1n (x̂ε2n ) ≤ J? + ε1 + ε2 + ε3,

where J? is the optimal objective value for (P).

VII. SIMULATION RESULTS
In this section, we demonstrate the application of the

ONLINE DATA ASSIMILATION ALGORITHM to find an ε-
proper data-driven solution x ∈ R30 for Problem (P). We
consider N = 50 iid sample points {ξ̂k}Nk=1 streaming
randomly in between every 1 to 3 seconds with each data
point ξ̂k ∈ R10 a realization of the unknown distribution P.
Here, we assume that the unknown distribution is a mixture
of the multivariate uniform distribution on [−2, 2]10 and
the multivariate normal distribution N (2.5 · 110, 4 · I10).
We assume the cost function f : R30 × R10 → R to be
f(x, ξ) := x>Ax + x>Bξ + ξ>Cξ with random values for
the positive semi-definite matrix A ∈ R30×30, B ∈ R30×10

and negative definite matrix C ∈ R10×10. Let the reliability
1 − βn := 1 − 0.95e1−

√
n and use the parameter c1 = 2,

c1 = 1 to design the radius ε(βn) of the Wasserstein ball.
We sample the initial data-driven solution x̂(0) from the
uniform distribution [0, 10]30. The tolerance for the algorithm
is ε1 = 10−5, ε2 = 10−6, and ε3 = 10−6.

To evaluate the quality of the obtained ε-proper data-
driven solution with the streaming data, we estimate the
optimizer of (P), x?, by minimizing the average value of
the cost function f for a validation data set with Nval = 104

data points randomly generated from the distribution P (in
the simulation case P is known). We take the resulting
objective value as the estimated optimal objective value for
Problem (P), i.e., J? := Ĵ?(x?). We calculate Ĵ?(x?) using
the underline distribution P, serving as the true but unknown
scale to evaluate the goodness of the certificate obtained
throughout the algorithm.

Figure 1 shows the evolution of the certificate sequence
{Ĵε1n (x̂(r))}N,∞n=1,r=1 for the decision sequence {x̂(r)}∞r=1.
The blue line in the Figure 1 shows the relative goodness
of the certificates for the currently used ε1-proper data-
driven solution x̂(r) calibrated by the estimated optimal
value J? over time. The red points indicate that a new
certificate Ĵε1n+1(x̂(r)(t)) is processing when the new data
set is incorporated, while at these time intervals the old
certificate Ĵε1n (x̂ε2n ), associated with the ε2-optimal and ε1-
proper data-driven solution x̂ε2n , is still valid to guarantee
the performance under the old reliability βn. This situation
commonly happens when a new data set Ξ̂n+1 is streamed in
and a new certificate Ĵε1n+1(x̂(r)(t)) is yet to be obtained. It
can be seen that after a few samples streamed, the obtained
certificate becomes close to the estimated true optimal value
J? within the 10% range.

VIII. CONCLUSIONS
In this paper, we have proposed the ONLINE DATA AS-

SIMILATION ALGORITHM for real-time data-driven solutions
of (P) with guaranteed out-of-sample performance. Such
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Fig. 1: Relative goodness of the certificates for the performance
guarantee of an ε1-proper data-driven solution. The x-axis is
time (seconds) and the y-axis plots the relative goodness function
R(t) := |(Ĵn(x̂(r)(t))− J?)/J?|.

solutions are available any time during the execution of
the algorithm, and the optimal data-driven solution are ap-
proached with a (sub)linear convergence rate. The algorithm
terminates after collecting sufficient amount of data to make
a good decision. Future work will generalize the results for
weaker assumptions of the problem and potentially extend
the algorithm to scenarios that include system dynamics.
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