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Abstract: We propose a novel Human-Swarm Interaction (HSI) framework which enables the user
to control a swarm’s shape and formation. The user commands the swarm utilizing just arm gestures
and motions which are recorded by an off-the-shelf wearable armband. We propose a novel interpreter
system, which acts as an intermediary between the user and the swarm to simplify the user’s role in the
interaction. The interpreter takes high level input drawn using gestures by the user, and translates it into
low level swarm control commands. This interpreter employs machine learning, Kalman filtering and
optimal control techniques to translate the user input into swarm control parameters. A notion of Human
Interpretable dynamics is introduced, which is used by the interpreter for planning as well as to provide
feedback to the user. The dynamics of the swarm are controlled using a novel decentralized formation
controller based on distributed linear iterations and dynamic average consensus. The framework is
demonstrated theoretically as well as experimentally in a 2D environment, with a human controlling
a swarm of simulated robots in real time.
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1. INTRODUCTION

Motivation. Due to recent advances in technology, the field
of swarm robotics has become pervasive in the research com-
munity while slowly permeating to the industry. Although the
coordination of multiple robots such as foraging, coverage, and
flocking(Olfati-Saber et al., 2006; Jadbabaie et al., 2003; Bullo
et al., 2009) has received much attention, the human interaction
with robotic swarms is less understood (Kolling et al., 2016).
Thus, according to the latest Robotics Roadmap 1 a top pri-
ority in swarm robotics is the development of unifying HSI
frameworks, the elucidation of rich set of HSI examples, and
their comparison. In particular, there is a need to develop novel
intuitive interfaces for humans to communicate their intentions
to swarms and make it easier for humans to interpret swarms.
At the same time, a swarm may require high dimensional and
complex control inputs which cannot be intuitively given by a
human. Motivated by this, we propose to build a novel supervi-
sory interpreter (Figure 1) to bridge the human and the swarm,
which is essential to ensure the effectiveness of a HSI system.
We consider the particular problem of formation control, where
the human can intuitively draw shapes in the air with his/her
arm, which is translated into an effective distributed controller.
Related Work. According to recent surveys on HSI (Kolling
et al., 2016) and human multi-agent systems (Franchi, 2017),
humans either take a supervisory (Savla and Frazzoli, 2012),
direct (Setter et al., 2015), shared (Franchi et al., 2012) or
environmental (Wang and Schwager, 2016) control role in an
HSI framework. Our architecture however, allows humans to
provide high level supervisory inputs that are also direct and
detailed at the same time, thus allowing a high degree of
control with lessor human effort for large swarms. Most of the
HSI frameworks design have been human-centric and focused
on direct control of swarms either through teleoperation or
� This work was supported in part by NSF- CMMI 1434819 and AFOSR
FA9550-18-1-0158. We are grateful for their support. We thank Mac Schwager
for useful discussions regarding the HMM formulation used in this work. We
also thank Chidi Ewenike, Ramon Duran and Tomas Torres for their help in
developing the Myo armband setup used in this work.
1 Christensen, H. I., et al. "A roadmap for US robotics: from internet to robotics." (2016).
http://jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf
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Fig. 1. Workflow of Human Swarm Interface. The user commu-
nicates their intent vh through the wearable. The decoder
estimates the user intent v̂ from observations o. Using this,
the planner optimally obtains a set of intermediate goals
vs. The decentralized controller present in each agent i
reaches vsi by computing the velocities vi.

proximal interaction (Jawad et al., 2014; Setter et al., 2015).
Due to complicated swarm dynamics, the human will quickly
be overwhelmed and would not make the best decisions, as in
our previous work (Suresh, 2016; Suresh and Schwager, 2016).
Our planner addresses this by generating an intuitive human-
approved swarm-friendly plan for the swarm to follow.
More recently, gesture based techniques along with speech,
vision and motion have been used together to interact with
small teams of robots (Alonso-Mora et al., 2015; Gromov
et al., 2016) . These works rely on proximal multi-modal
interaction schemes which require complex hardware setup to
interpret the human gestures, which is not practical for large
scale swarms. We rely on a single wearable device without
any other external electronics, which makes the implementation
more practical. With respect to formation control for large scale
swarms, (Rubenstein et al., 2014) researchers have only used
predefined shapes and images as inputs for the swarm, which
facilitates only supervisory control for a HSI system. But in
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detailed at the same time, thus allowing a high degree of
control with lessor human effort for large swarms. Most of the
HSI frameworks design have been human-centric and focused
on direct control of swarms either through teleoperation or
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Fig. 1. Workflow of Human Swarm Interface. The user commu-
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estimates the user intent v̂ from observations o. Using this,
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reaches vsi by computing the velocities vi.

proximal interaction (Jawad et al., 2014; Setter et al., 2015).
Due to complicated swarm dynamics, the human will quickly
be overwhelmed and would not make the best decisions, as in
our previous work (Suresh, 2016; Suresh and Schwager, 2016).
Our planner addresses this by generating an intuitive human-
approved swarm-friendly plan for the swarm to follow.
More recently, gesture based techniques along with speech,
vision and motion have been used together to interact with
small teams of robots (Alonso-Mora et al., 2015; Gromov
et al., 2016) . These works rely on proximal multi-modal
interaction schemes which require complex hardware setup to
interpret the human gestures, which is not practical for large
scale swarms. We rely on a single wearable device without
any other external electronics, which makes the implementation
more practical. With respect to formation control for large scale
swarms, (Rubenstein et al., 2014) researchers have only used
predefined shapes and images as inputs for the swarm, which
facilitates only supervisory control for a HSI system. But in
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1. INTRODUCTION

Motivation. Due to recent advances in technology, the field
of swarm robotics has become pervasive in the research com-
munity while slowly permeating to the industry. Although the
coordination of multiple robots such as foraging, coverage, and
flocking(Olfati-Saber et al., 2006; Jadbabaie et al., 2003; Bullo
et al., 2009) has received much attention, the human interaction
with robotic swarms is less understood (Kolling et al., 2016).
Thus, according to the latest Robotics Roadmap 1 a top pri-
ority in swarm robotics is the development of unifying HSI
frameworks, the elucidation of rich set of HSI examples, and
their comparison. In particular, there is a need to develop novel
intuitive interfaces for humans to communicate their intentions
to swarms and make it easier for humans to interpret swarms.
At the same time, a swarm may require high dimensional and
complex control inputs which cannot be intuitively given by a
human. Motivated by this, we propose to build a novel supervi-
sory interpreter (Figure 1) to bridge the human and the swarm,
which is essential to ensure the effectiveness of a HSI system.
We consider the particular problem of formation control, where
the human can intuitively draw shapes in the air with his/her
arm, which is translated into an effective distributed controller.
Related Work. According to recent surveys on HSI (Kolling
et al., 2016) and human multi-agent systems (Franchi, 2017),
humans either take a supervisory (Savla and Frazzoli, 2012),
direct (Setter et al., 2015), shared (Franchi et al., 2012) or
environmental (Wang and Schwager, 2016) control role in an
HSI framework. Our architecture however, allows humans to
provide high level supervisory inputs that are also direct and
detailed at the same time, thus allowing a high degree of
control with lessor human effort for large swarms. Most of the
HSI frameworks design have been human-centric and focused
on direct control of swarms either through teleoperation or
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proximal interaction (Jawad et al., 2014; Setter et al., 2015).
Due to complicated swarm dynamics, the human will quickly
be overwhelmed and would not make the best decisions, as in
our previous work (Suresh, 2016; Suresh and Schwager, 2016).
Our planner addresses this by generating an intuitive human-
approved swarm-friendly plan for the swarm to follow.
More recently, gesture based techniques along with speech,
vision and motion have been used together to interact with
small teams of robots (Alonso-Mora et al., 2015; Gromov
et al., 2016) . These works rely on proximal multi-modal
interaction schemes which require complex hardware setup to
interpret the human gestures, which is not practical for large
scale swarms. We rely on a single wearable device without
any other external electronics, which makes the implementation
more practical. With respect to formation control for large scale
swarms, (Rubenstein et al., 2014) researchers have only used
predefined shapes and images as inputs for the swarm, which
facilitates only supervisory control for a HSI system. But in
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1. INTRODUCTION

Motivation. Due to recent advances in technology, the field
of swarm robotics has become pervasive in the research com-
munity while slowly permeating to the industry. Although the
coordination of multiple robots such as foraging, coverage, and
flocking(Olfati-Saber et al., 2006; Jadbabaie et al., 2003; Bullo
et al., 2009) has received much attention, the human interaction
with robotic swarms is less understood (Kolling et al., 2016).
Thus, according to the latest Robotics Roadmap 1 a top pri-
ority in swarm robotics is the development of unifying HSI
frameworks, the elucidation of rich set of HSI examples, and
their comparison. In particular, there is a need to develop novel
intuitive interfaces for humans to communicate their intentions
to swarms and make it easier for humans to interpret swarms.
At the same time, a swarm may require high dimensional and
complex control inputs which cannot be intuitively given by a
human. Motivated by this, we propose to build a novel supervi-
sory interpreter (Figure 1) to bridge the human and the swarm,
which is essential to ensure the effectiveness of a HSI system.
We consider the particular problem of formation control, where
the human can intuitively draw shapes in the air with his/her
arm, which is translated into an effective distributed controller.
Related Work. According to recent surveys on HSI (Kolling
et al., 2016) and human multi-agent systems (Franchi, 2017),
humans either take a supervisory (Savla and Frazzoli, 2012),
direct (Setter et al., 2015), shared (Franchi et al., 2012) or
environmental (Wang and Schwager, 2016) control role in an
HSI framework. Our architecture however, allows humans to
provide high level supervisory inputs that are also direct and
detailed at the same time, thus allowing a high degree of
control with lessor human effort for large swarms. Most of the
HSI frameworks design have been human-centric and focused
on direct control of swarms either through teleoperation or
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proximal interaction (Jawad et al., 2014; Setter et al., 2015).
Due to complicated swarm dynamics, the human will quickly
be overwhelmed and would not make the best decisions, as in
our previous work (Suresh, 2016; Suresh and Schwager, 2016).
Our planner addresses this by generating an intuitive human-
approved swarm-friendly plan for the swarm to follow.
More recently, gesture based techniques along with speech,
vision and motion have been used together to interact with
small teams of robots (Alonso-Mora et al., 2015; Gromov
et al., 2016) . These works rely on proximal multi-modal
interaction schemes which require complex hardware setup to
interpret the human gestures, which is not practical for large
scale swarms. We rely on a single wearable device without
any other external electronics, which makes the implementation
more practical. With respect to formation control for large scale
swarms, (Rubenstein et al., 2014) researchers have only used
predefined shapes and images as inputs for the swarm, which
facilitates only supervisory control for a HSI system. But in
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1. INTRODUCTION

Motivation. Due to recent advances in technology, the field
of swarm robotics has become pervasive in the research com-
munity while slowly permeating to the industry. Although the
coordination of multiple robots such as foraging, coverage, and
flocking(Olfati-Saber et al., 2006; Jadbabaie et al., 2003; Bullo
et al., 2009) has received much attention, the human interaction
with robotic swarms is less understood (Kolling et al., 2016).
Thus, according to the latest Robotics Roadmap 1 a top pri-
ority in swarm robotics is the development of unifying HSI
frameworks, the elucidation of rich set of HSI examples, and
their comparison. In particular, there is a need to develop novel
intuitive interfaces for humans to communicate their intentions
to swarms and make it easier for humans to interpret swarms.
At the same time, a swarm may require high dimensional and
complex control inputs which cannot be intuitively given by a
human. Motivated by this, we propose to build a novel supervi-
sory interpreter (Figure 1) to bridge the human and the swarm,
which is essential to ensure the effectiveness of a HSI system.
We consider the particular problem of formation control, where
the human can intuitively draw shapes in the air with his/her
arm, which is translated into an effective distributed controller.
Related Work. According to recent surveys on HSI (Kolling
et al., 2016) and human multi-agent systems (Franchi, 2017),
humans either take a supervisory (Savla and Frazzoli, 2012),
direct (Setter et al., 2015), shared (Franchi et al., 2012) or
environmental (Wang and Schwager, 2016) control role in an
HSI framework. Our architecture however, allows humans to
provide high level supervisory inputs that are also direct and
detailed at the same time, thus allowing a high degree of
control with lessor human effort for large swarms. Most of the
HSI frameworks design have been human-centric and focused
on direct control of swarms either through teleoperation or
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proximal interaction (Jawad et al., 2014; Setter et al., 2015).
Due to complicated swarm dynamics, the human will quickly
be overwhelmed and would not make the best decisions, as in
our previous work (Suresh, 2016; Suresh and Schwager, 2016).
Our planner addresses this by generating an intuitive human-
approved swarm-friendly plan for the swarm to follow.
More recently, gesture based techniques along with speech,
vision and motion have been used together to interact with
small teams of robots (Alonso-Mora et al., 2015; Gromov
et al., 2016) . These works rely on proximal multi-modal
interaction schemes which require complex hardware setup to
interpret the human gestures, which is not practical for large
scale swarms. We rely on a single wearable device without
any other external electronics, which makes the implementation
more practical. With respect to formation control for large scale
swarms, (Rubenstein et al., 2014) researchers have only used
predefined shapes and images as inputs for the swarm, which
facilitates only supervisory control for a HSI system. But in

2nd IFAC Conference on Cyber-Physical & Human-Systems
Miami, FL, USA, Dec. 14-15, 2018

Copyright ©2018 IFAC 83



84	 Aamodh Suresh  et al. / IFAC PapersOnLine 51-34 (2019) 83–88

our approach the swarm is capable of understanding intuitive
human intention with the aid of the interpreter.
Statement of Contributions. We propose a novel HSI framework
where we consider both a human agent and a dynamic swarm,
with an interpreter acting as an bridge between the two. By
means of it, the user can communicate their intentions intu-
itively and naturally, without having an in depth understanding
of the swarm dynamics. At the same time, the swarm receives
control subgoals in their domain and need not spend resources
to decode the user’s intention. The paper presents contributions
in the following three aspects. On the human-interpreter in-
teraction side, we formulate a novel intention decoder using
Kalman Filtering and HMMs for simultaneous dynamic and
static gesture decoding utilizing the IMU and EMG sensors,
respectively. This method increases intuitiveness as preliminary
tests have suggested that the human quickly learns to adapt to
this interface, with results being comparable to a standard inter-
faces like a computer mouse. Second, we further exploit the in-
terpreter element to devise control subgoals that are efficient for
the swarm, and which require global information that is not eas-
ily accessible for the swarm. In this way, the interpreter solves
a planning problem with the goal of controlling the swarm effi-
ciently while following an intuitive behavior. Third, we present
a novel discrete second-order distributed formation controller
for the swarm that combines the Jacobi Overrelaxation Algo-
rithm and dynamic average consensus to guarantee the conver-
gence of a (second-order integrator) swarm to a desired shape,
scaling, rotation and displacement. Our controller relies only
on the position information of each agent and communication
with their neighbors using variable communication radii, which
provides a practical setting. Finally, we highlight a contribution
on the integration of diverse tools from control theory, network
science, machine learning, signal processing, optimization and
robotics that serve to articulate our HSI framework.

2. PRELIMINARY CONCEPTS

Basic Notations. We let R denote the space of real numbers,
Z≥0 the space of positive integers, Rn and RM×n denote the
n-dimensional real vector space and the space of MXn real
matrices, respectively and P to denote the set of n dimensional
polygonal shapes. In what follows, 1M ∈ RM are column
vector of ones, I ∈ RM×M is the identity matrix, O ∈ RM×n

denotes a matrix of zeros and ‖.‖ denotes the Euclidean norm.
Given a matrix A ∈ RM×M , its eigenvalues are denoted by
{λA

1 , . . . , λ
A
M}, enumerated by their increasing real parts and

its ith row is denoted by Ai.
Graph Theory Notions. Consider a swarm of M agents in
Rn. Let pi(t), vi(t) ∈ Rn denote the position and velocity
respectively of the ith agent at time t.
We model the communication among agents by means of an
undirected ν-disk communication graph Gν = (V,Eν(p)),
where V = {1, . . . ,M} denotes the set of agents (vertices of
the graph), and Eν(p) ⊂ V × V , denotes the set of edges.
In particular, (i, j) ∈ Eν(p) if and only if ‖pi − pj‖ ≤ ν.
The entries of the associated adjacency matrix A(p) ∈ RM×M

become:

aij =

{
1, if ‖pi − pj‖ ≤ ν,
0, otherwise.

The neighbor set Ni for the ith agent is given by Ni :=
{j | aij = 1}. Associated with Gν , we consider a weight-
balanced weighting W (t) ∈ RM×M , where W (t) is the
metropolis weight matrix corresponding to the communication
graph Gν ; see (Xiao and Boyd, 2004), and wij are the corre-
sponding entries of W . We let di = Ai(p)1

�
M be the degree of

the ith agent. We denote by D ∈ RM×M the diagonal degree
matrix of G with di, the degree of node i, being the ith diagonal
entry of D. The Laplacian matrix L ∈ RM×M of the graph Gν

is given by L = D −A, and the normalized laplacian matrix is
given by LN = D

−1
2 LD

−1
2 . Similarly the weighted Laplacian

matrix is given by LW = I − W . The connectivity properties
of a graph are captured by the second smallest eigenvalue λ2
of the Laplacian matrix L. We can also express connectivity
in terms of λW

2 and λN
2 . We can say that the respective graph

is connected if λW
2 , λN

2 > 0, and connectivity increases with
increase in λW

2 , λN
2 . Readers can refer (Bullo et al., 2009;

Godsil and Royle, 2001) for further details on Graph Theory
and its application to robotics.

3. PROPOSED FRAMEWORK AND PROBLEM
FORMULATION

Here, we first introduce the various timescales involved in
the interactions, and propose a new HSI framework, while
providing a description of its components. Later, we identify
the various problems to be solved to implement this framework.
Timescales Involved. We assume that the interactions between
the human, interpreter and the swarm, and the dynamic update
of the swarm, may occur at time scales that go from coarser to
finer resolution. In this way, human and interpreter may interact
at discrete times that are a multiple of τh, the interpreter and
the swarm may interact at multiples of τint < τh, while the
swarm dynamic update times occur at multiples of τs < τint.
In what follows, we identify T ≡ Tτh ≥ 0 (resp. l ≡ lτint,
and t ≡ lτs) and we distinguish these integers as belonging to
T ∈ Zh

≥0 ≡ Z≥0 (resp. l ∈ Zint
≥0 ≡ Z≥0, and t ∈ Zs

≥0 ≡ Z≥0.)
We use the time variable t for the wearable device as it operates
at a fast rate, similar to the swarm.
Proposed Framework. The user specifies their intentions which
are translated by the interpreter and in turn communicated
to the swarm. The human uses a wearable device called the
MYO armband 2 which observes the human intended swarm
command. By means of it, the user specifies a desired formation
shape S ∈ P, centroid c ∈ R2, orientation θ ∈ R, and scaling
s ∈ R for the swarm. These parameters make up the desired
human intention v which the interpreter decodes as v̂, where
v, v̂ : Zint

≥0 → P × R2× R × R. The MYO armband receives
the human intention v(T ) as Electromyography (EMG) signals
and Inertial Measurement Unit IMU signals.
The interpreter first uses a decoder (Section 4.1) to translate
human intentions v(T ) into v̂(T ). Then it translates S(T ) in
v̂(T ) to desired relative agent positions zf (T ) ∈ RM×n which
best depicts the swarm shape. The swarm also has an operation
mode µ(t) ∈ {1, . . . ,m} corresponding to m different commu-
nication ranges for each agent of the swarm. We have the notion
of swarm operating cost involving µ(t) as a trade-off between
network connectivity and network maintenance costs. We also
introduce the notion of Human Interpretable Dynamics (HID),
which represents easily understandable swarm dynamics by the
Human. Both these concepts will be elucidated in Section 4.4.2.
Now, Given a desired formation zf (T ) and the current state
p(0), the interpreter then determines the set of switching in-
termediate goals V s = {vs(1), ..., vs(N)} with vs(l) =
{z(l), s(l), c(l), θ(l), µ(l)}, l ∈ {1, . . . , N} and N being the
time horizon for switching. These intermediate goals V s follow
the HID and are optimal with respect to the swarm operating
costs. These intermediate goals represent way points and in-
termediate shapes which will be communicated to the swarm.
These parameters constitute the high-level commands that the
swarm receives and executes via a distributed algorithm. That
is, our swarm employs a decentralized control scheme detailed
in Section 4.3 to reach vs(l). Figure 1 illustrates the work-flow
of our proposed framework. Thus, from here, we need to solve
the following problems to complete our framework:

2 https://www.myo.com/
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Fig. 2. The user intention decoder system. i) The user conveys
their intention through arm movement and gestures. ii)
The Myo armband captures the gestures as EMG signals
which are read by the gesture decoder. iii) Arm movements
are captured as IMU signals and sent to a Kalman filter.
iv) The HMM based decoder provides gestures which are
mapped to mouse clicks and scrolls. v) The updated state
of the Kalman filter is used to assign mouse position.
vi) Shape S and centroid c are specified using the GUI
(Figure. 4) using iv) and v)

Problem 1. (Human Intention Decoder). Given the observa-
tions o from the Myo armband, design a decoder to get the
desired human intention v̂(T ).
Problem 2. (Behavior Specifier). Given the desired human in-
tention v̂, design an algorithm to produce the goal behavior V s

which can be understood by the swarm.
Problem 3. (Planning Algorithm). Given the goal behavior V s,
generate the set of optimal intermediate behavior subgoals
{vs(l)} with l ∈ {1, . . . , N} ∩ Zint

≥0, and N denoting the time
horizon, and Nτint ≤ Tτh which follow human-interpretable
dynamics and minimize swarm operating costs.
Problem 4. (Distributed Swarm Controller). Given the com-
mand vs(l), for some l ∈ Zint

≥0, design a distributed algorithm
to drive the swarm to the intermediate shape z(l) with scaling
s(l), rotation θ(l) and centroid c(l) using operation mode µ(l)
from some initial position p(l − 1).
Problem 5. (User Interface Design and Feedback). Develop a
Graphical user interface (GUI) for the human to communicate
their intention v to the interpreter and receive feedback about
the decoded intention v̂ and the state of the swarm.

4. TECHNICAL APPROACH

The solutions to the above problems are briefly explained here,
the reader can refer the extended version (Suresh and Martínez,
2018) for detailed explanations and proofs.

4.1 Problem 1: Intention Decoding

The user conveys their intention v through gestures and arm
movement which are recorded by the Myo armband as EMG
signals. The intention decoder deciphers discrete arm gestures
and arm position using the EMG and IMU sensors respectively.
The gestures and arm movement are translated to mouse clicks
and mouse movements according to Figure 3, which provide
feedback of the decoded intended gesture v̂(T ) to the user. The
entire pipeline is described in Figure 2.

4.2 Problem 5: User Interface Design

We developed a GUI in MATLAB which takes in the input a
computer mouse and performs the desired behavior with simu-
lated robots. The user interacts with the GUI using arm move-
ments and gestures which are mapped to mouse movements and
mouse clicks according to Section 4.1 and Figure 2. Figure 4
illustrates a snapshot of the GUI during the planning phase
which has 5 different zones, whose selection will be triggered
by hovering over to the desired area with the mouse pointer.
For more details please refer to the extended version (Suresh
and Martínez, 2018)

4.3 Problem 4: Swarm Controller

Our swarm controller is designed to achieve the interpreter’s
intention vs(l) := {z(l), s(l), c(l), θ(l), µ(l)} at time lτint.

(a) Fist (b) Spread (c) Wave Up (d) Wave
down

(e) Normal

(f) Left click (g) Right click (h) Scroll up (i) Scroll down (j) Normal

Fig. 3. (a)-(e) show the various gestures used and (f)-(j) indicate
the corresponding mouse functionalities.

Fig. 4. UI used to interact with the interpreter.

Having second-order integrator dynamics for the agents, and
the need of controlling the swarm centroid motivates our con-
troller which extends (Cortés, 2009) (for first-order agents) with
the dynamic consensus feedback interconnection of (Zhu and
Martínez, 2010).
With pi, vi being the position and velocity of the ith agent, our
second-order distributed swarm controller takes the form:
pi(t+ 1) =pi(t) + vi(t), (1a)
vi(t+ 1) =− α(pi(t) + vi(t)) +

α

di(t)

∑
j �=i

{aij(t)(pj(t) + vi(t))+

s(l)di(t)(zi(l)− zj(l))R
θ(t)} − kp(ci(t+ 1)− c(l)),

ci(t+ 1) =ci(t)+∑
j �=i

wij(cj(t)− ci(t)) + pi(t)− pi(t− 1), (1b)

where kp, α ∈ (0, 1) are control gains and Rθ is the rotation
matrix corresponding to θ. The variable ci(t) ∈ Rn is the
estimated center of the swarm by the ith agent. Note that the wij
are the Metropolis weights defined in Section 2. This algorithm,
which applies to second-order systems, cancels out the drift
observed in (Cortés, 2009) with the help of dynamic consensus,
and drives the swarm to the desired centroid at time lτint. The
FODAC algorithm in (Zhu and Martínez, 2010) in equation (1b)
is used to distributively estimate the mean of time varying
reference signal p(t) which would give us the estimate of the
swarm’s centroid c(t).
It is interesting to note that the swarm controller (1) consists
of autonomous components and a controlled component which
house the desired interpreter’s intention vs(l). So vs(l) can be
communicated once at the beginning of the lth iteration and
the agents just need to adjust their positions and communicate
locally with their neighbors to achieve the intermediate goal.
We will make use of the following assumptions on Gµ(t) to
analyze this controller:
Assumption 1. (Connectivity). The communication graph Gµ(t)
has at least one globally reachable vertex at every time t.
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Fig. 2. The user intention decoder system. i) The user conveys
their intention through arm movement and gestures. ii)
The Myo armband captures the gestures as EMG signals
which are read by the gesture decoder. iii) Arm movements
are captured as IMU signals and sent to a Kalman filter.
iv) The HMM based decoder provides gestures which are
mapped to mouse clicks and scrolls. v) The updated state
of the Kalman filter is used to assign mouse position.
vi) Shape S and centroid c are specified using the GUI
(Figure. 4) using iv) and v)

Problem 1. (Human Intention Decoder). Given the observa-
tions o from the Myo armband, design a decoder to get the
desired human intention v̂(T ).
Problem 2. (Behavior Specifier). Given the desired human in-
tention v̂, design an algorithm to produce the goal behavior V s

which can be understood by the swarm.
Problem 3. (Planning Algorithm). Given the goal behavior V s,
generate the set of optimal intermediate behavior subgoals
{vs(l)} with l ∈ {1, . . . , N} ∩ Zint

≥0, and N denoting the time
horizon, and Nτint ≤ Tτh which follow human-interpretable
dynamics and minimize swarm operating costs.
Problem 4. (Distributed Swarm Controller). Given the com-
mand vs(l), for some l ∈ Zint

≥0, design a distributed algorithm
to drive the swarm to the intermediate shape z(l) with scaling
s(l), rotation θ(l) and centroid c(l) using operation mode µ(l)
from some initial position p(l − 1).
Problem 5. (User Interface Design and Feedback). Develop a
Graphical user interface (GUI) for the human to communicate
their intention v to the interpreter and receive feedback about
the decoded intention v̂ and the state of the swarm.

4. TECHNICAL APPROACH

The solutions to the above problems are briefly explained here,
the reader can refer the extended version (Suresh and Martínez,
2018) for detailed explanations and proofs.

4.1 Problem 1: Intention Decoding

The user conveys their intention v through gestures and arm
movement which are recorded by the Myo armband as EMG
signals. The intention decoder deciphers discrete arm gestures
and arm position using the EMG and IMU sensors respectively.
The gestures and arm movement are translated to mouse clicks
and mouse movements according to Figure 3, which provide
feedback of the decoded intended gesture v̂(T ) to the user. The
entire pipeline is described in Figure 2.

4.2 Problem 5: User Interface Design

We developed a GUI in MATLAB which takes in the input a
computer mouse and performs the desired behavior with simu-
lated robots. The user interacts with the GUI using arm move-
ments and gestures which are mapped to mouse movements and
mouse clicks according to Section 4.1 and Figure 2. Figure 4
illustrates a snapshot of the GUI during the planning phase
which has 5 different zones, whose selection will be triggered
by hovering over to the desired area with the mouse pointer.
For more details please refer to the extended version (Suresh
and Martínez, 2018)

4.3 Problem 4: Swarm Controller

Our swarm controller is designed to achieve the interpreter’s
intention vs(l) := {z(l), s(l), c(l), θ(l), µ(l)} at time lτint.

(a) Fist (b) Spread (c) Wave Up (d) Wave
down

(e) Normal

(f) Left click (g) Right click (h) Scroll up (i) Scroll down (j) Normal

Fig. 3. (a)-(e) show the various gestures used and (f)-(j) indicate
the corresponding mouse functionalities.

Fig. 4. UI used to interact with the interpreter.

Having second-order integrator dynamics for the agents, and
the need of controlling the swarm centroid motivates our con-
troller which extends (Cortés, 2009) (for first-order agents) with
the dynamic consensus feedback interconnection of (Zhu and
Martínez, 2010).
With pi, vi being the position and velocity of the ith agent, our
second-order distributed swarm controller takes the form:
pi(t+ 1) =pi(t) + vi(t), (1a)
vi(t+ 1) =− α(pi(t) + vi(t)) +

α

di(t)

∑
j �=i

{aij(t)(pj(t) + vi(t))+

s(l)di(t)(zi(l)− zj(l))R
θ(t)} − kp(ci(t+ 1)− c(l)),

ci(t+ 1) =ci(t)+∑
j �=i

wij(cj(t)− ci(t)) + pi(t)− pi(t− 1), (1b)

where kp, α ∈ (0, 1) are control gains and Rθ is the rotation
matrix corresponding to θ. The variable ci(t) ∈ Rn is the
estimated center of the swarm by the ith agent. Note that the wij
are the Metropolis weights defined in Section 2. This algorithm,
which applies to second-order systems, cancels out the drift
observed in (Cortés, 2009) with the help of dynamic consensus,
and drives the swarm to the desired centroid at time lτint. The
FODAC algorithm in (Zhu and Martínez, 2010) in equation (1b)
is used to distributively estimate the mean of time varying
reference signal p(t) which would give us the estimate of the
swarm’s centroid c(t).
It is interesting to note that the swarm controller (1) consists
of autonomous components and a controlled component which
house the desired interpreter’s intention vs(l). So vs(l) can be
communicated once at the beginning of the lth iteration and
the agents just need to adjust their positions and communicate
locally with their neighbors to achieve the intermediate goal.
We will make use of the following assumptions on Gµ(t) to
analyze this controller:
Assumption 1. (Connectivity). The communication graph Gµ(t)
has at least one globally reachable vertex at every time t.
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Assumption 2. (Constant graphs). The communication graph
Gµ(t) remains constant for t ∈ [(l − 1)τint, lτint].

With δ1 = 1− (1−αλN
2 )2, δ2 = 1− (1− λW

2 )2 we can state
the following theorem:
Theorem 1. (Stability of Swarm Controller). Under Assump-
tion 1 (connectivity) and Assumption 2 (constant interconnec-
tion graph), with the control gains satisfying kp < δ1δ2

2 , the
swarm globally uniformly asymptotically stabilizes to the de-
sired state Xd under the swarm controller dynamics (1) from
any initial condition.
We will use the results of Theorem 1 to get an intuition of the
role of graph connectivity (λN

2 and λW
2 ) in the convergence of

our swarm controller (1).
Corollary 1. The convergence rate of (1) is directly propor-
tional to λN

2 and λW
2 of the communication graph.

The proof of Corollary 1 and Theorem 1 is presented in the
Appendix of the extended version (Suresh and Martínez, 2018).
Using these results we will design a planning algorithm, which
optimally determines the intermediate subgoals which will be
described in Section 4.4.2.

4.4 The Interpreter

For ease of illustration, we consider the formulation in 2D
space. The interpreter mainly consists of two parts: the behavior
specifier and the planner.
Problem 2: Behavior Specifier The Behavior specifier con-
verts the desired human intention into parameters that can be
comprehended by the swarm. The human user specifies the
desired shape Sd ∈ P which takes the form of an arbitrary
polygon, the desired centroid cd ∈ R2, scaling sd ∈ R and
rotation θd ∈ R. The interpreter then decides the formation
denoted by the relative positions of the agent zd ∈ RM×n,
which would best illustrate the shape Sd given by the human.
For simplicity, we use a uniform distribution in the interior of
the shape Sd to obtain zd, which is illustrated in Figure 5(b).
For more explanation please refer to the extended version of
the draft (Suresh and Martínez, 2018). The parameters zd, Sd,
cd, sd and θd are passed on to the planner.
Problem 3: Planner The Planner uses the received decoded
human intention parameters to construct a set of intermediate
way points {S(l), s(l), θ(l), c(l)}, ∀l ∈ {1, . . . , N}, where N
denotes the number of intermediate steps in the plan to reach
the final goal.
To do this, we employ an N -Horizon Discrete Switched Lin-
ear Quadratic Regulator (DSLQR) formulation. A particular
DSLQR problem with a dynamical variable h ∈ Rd and time
horizon l ∈ {1, . . . , N} can be formulated as follows:

min J(u, µ) =

N∑
l=0

(h(l)�Qµh(l) + u(l)�Rµu(l))

+ h(N)�Qfh(N), (2a)
subject to h(l + 1) = Ah(l) + Bu(l), (2b)

where h(0) = h0. Here, the running cost consist of a switching
LQ cost function, with parameterized matrices Qµ and Rµ,
depending on a mode µ. The function will be designed to
enhance swarm performance while the linear constraint will
be used to enforce an easy-to-interpret behavior by a human,
which defines a Human Interpretable (HID) dynamics.
Details and methodology of DSLQR systems can be found
in (Zhang et al., 2009). We show next how we apply this
approach in our particular setup and describe the matrices that
we choose for our framework.
(i) Human-Interpretable Dynamics: We introduce the notion of
Human Interpretable Dynamics (HID) to denote a dynamical

(a) HID illustration (b) Formation Specifier

Fig. 5. (a) HID illustration for shape changing from rotated
cone to a standing rectangle. The model parametrs used
are A = B = Q = Ih, R = 100Ih and Qf = 1500Ih. (b)
Left: The user specifies the desired shape Sd by providing
v vertices (triangles). Right: the interpreter determines the
relative positions zd of M = 500 agents (blue dots) to
represent the shape drawn by user.

system that can be easily understood by a human. Since the
interpreter needs to provide feedback to the user, the planner
needs to provide an abstraction of the complicated swarm
dynamics in an Mn-dimensional space. These dynamics need
to be slower than the swarm dynamics to enhance human
interpretability, and are hence implemented in the l timescale
described in Section 3.
Here, we propose a simple linear dynamical system approach
to model these dynamics, which takes into account the desired
human intention hd = (Sd, sd, θd, c). We suppose that fully ac-
tuated linear dynamical systems are more easily understandable
by humans, as opposed to other nonlinear system models. We
let h = [S, s, θ, c]� denote the state of the HID system with
h(l) ∈ H, where H = P × Rn × R × R. Then, the HID takes
the form:

h(l + 1) = Ah(l) + Bu(l), (3)
where matrices A,B ∈ H × H and control input u ∈ H. In
this paper, we choose A and B to be identity matrices. This
seems to be the most intuitive dynamics as the control input
applies directly on the system. In future work, we will study
alternative choices for these dynamics and conduct human
studies to validate our proposition.
We use the N horizon Discrete LQR control technique to drive
the HID towards hd starting from some initial configuration
h(0) = h0. By considering a change of variable he(l) = h(l)−
hd, we define a first term contributing to the problem cost
functional as follows:

JHID(u) =

N−1∑
l=0

(he�(l)Qhe(l) + u(l)�Ru(l))+

he(N)�Qfh
e(N). (4)

where the matrices Q,R,Qf ∈ H × H are positive definite
and u(l), ∀l ∈ {1, . . . , N} is a step change applied during
the lth time. So u(l) is chosen such that the cost JHID is
minimized. This is solved using the standard LQR approach,
and the results are shown in Figure 5(a) for a N = 10 horizon
problem. Figure 5(a) shows the stages of transformation of a 5
sided polygon to a rotated and translated 4 sided polygon. The
figure depicts a seemingly natural transition which can be easily
interpreted by the user, thus justifying the HID formulation. The
case of mismatch in the number of vertices in the initial and
desired shapes is handled by adding vertices appropriately on
the perimeter of the shape that has fewer vertices.
(ii) Swarm Performance Costs. We just discussed how to gen-
erate intermediate shapes taking into account the HID. Now we
consider the swarm performance and communication cost to
choose the operating mode ν in the general setup. The operat-
ing modes ν correspond to a subset of ν-disk graphs defined
over the swarm when distributed over a shape. Since agent
formations are chosen in a consistent manner as described in
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e.g. Figure 5(b), the number of possible graphs over the agents
for different ν is very much reduced and remains constant for
scaled shapes. From now on, we consider this set is given by
{ν1, . . . , νm} by choosing appropriate communication radii.
Operating costs involved: To increase the speed of convergence
and to facilitate quicker interpretation by a human, we need
to maximize the notion of connectivity involving the second
smallest eigenvalue λN

2 or λW
2 of the respective Laplacian

matrices LN and LW . This can be found from the determinant
of the matrix G ∈ R(M−1)×(M−1) defined as G = F�LNF
with F ∈ RM×(M−1), F1M = 0 and F�F = I . Since
the determinant of a matrix is a product of its eigenvalues,
connectivity determined by λN

2 increases iff the determinant
of G increases. So the connectivity cost JCON(l) being in
formation z and operation mode ν at time l is given by:

JCON(ν, h) = −κ1 log det(κ2Gν(l)). (5)
To ensure JCON remains well scaled and positive we introduce
positive constants κ1 and κ2 respectively. Having ν correspond-
ing to a higher communication radius implies that we will be
using more energy to communicate and maintain communica-
tion links. This is encoded as a communication cost Jcom(l)
given by

JCOM(ν, h) = κ3 log(ν
2
ν1

�
MAν(h)1M ), (6)

where ν(l) is the communication range at time l and κ3 is a
positive constant used for scaling.
Adding these costs (4),(5),(6) together defines the total cost
used by the planner as:

J(u, ν) =
N−1∑
l=0

(h̄e(l)�Qν(l)h̄
e(l) + u(l)�Ru(l)+

h̄e(N)�Qf h̄
e(N). (7)

where Qν =

[
Q 0
0 JCON(ν) + JCOM(ν)

]
, h̄e =

[
he

1

]
, u =

[
u
0

]

and R =
[
R 0
0 1

]
. Observe that a solution to the above problem

requires the evaluation of all possible graph combinations for
different chosen controls u. By choosing the graphs based on
the communication radii, and considering a class of forma-
tions, we reduce significantly the number of possible graphs
to evaluate. In addition, we employ the DSLQR formulation
from (Zhang et al., 2009) to obtain the optimal set of u(l)
and ν(l) which minimizes J . Our optimization is done in the
following sequential manner: first we optimize in the sequence
of h̄e and u, then, given this, we optimize in the ν variable using
the DSLQR approach from (Zhang et al., 2009). This is further
illustrated and discussed in Section 5.3.

5. IMPLEMENTATION RESULTS
5.1 System Setup
The user has the choice to use either the MYO armband or
the mouse to interact with a GUI to control the formation of
a simulated swarm in a two dimensional environment. The
swarm controller developed in Section 4.3 essentially generates
waypoints for the swarm to follow, we assume holonomic
dynamics for the individual agents and assume they reach their
respective waypoints. We do not focus on collision avoidance,
which will be addressed in future work. We utilize the ROS
kinetic framework with Python scripting language to interface
with the MYO armband and control the mouse pointer. We
use Matlab to create the GUI shown in Figure 4, which uses
the mouse or the MYO armband as an input device. For the
formation controller we set the control gain α = 0.15 and
proportional constant kp = 0.03.
5.2 Intention Decoding
We performed tests to gauge the accuracy and speed of the pro-
posed HMM and Kalman Filter models. For the HMM model,

(a) Mouse movement with wearable (b) Mouse movement without wear-
able

Fig. 6. Aggregate results of tracing a pentagon.(Red) a) The
user specifies the shape by using MYO armband. (Blue) b)
The user specifies the shape by using the mouse. (Green)

Table 1. Error comparison mouse and wearable.

Mouse Wearable
Sl. no Loops Avg Error Total Error Loops Avg Error Total Error

1 7 0.026 122.57 5 0.038 179.26
2 8 0.028 129.40 5 0.037 174.74
3 9 0.031 147.02 7 0.048 222.07
4 8 0.031 148.92 7 0.05 235.27
5 9 0.035 161.50 5 0.029 132.72

some of our previous tests had given an accuracy levels of over
90% on an average (Suresh, 2016) for similar gestures and
framework. On preliminary tests we observed similar results
and hence, in the interest of space, we skip this accuracy test
for the HMM model. For the effectiveness of the arm movement
decoder, we compare the results of operating a mouse with and
without the MYO armband. Figure 6 represents the aggregate
results over 5 trials. The user was tasked to continuously trace
a pentagon which represents the human intention for a minute.
It can be seen from the Figure 6 that the results are similar for
both cases. Table 1 describes the error involved in each of the
trials. It can be seen that the errors involved are about the same
with both interfaces, however the speed of using the mouse is
higher than the other. This is also due to the fact that users are
accustomed to using the mouse for years and need time to adapt
to the new interface. But in the 5th trial it can be seen that the
performance with the wearable matches many trials with the
mouse, which shows that the user can adapt quickly to use the
new interface.

5.3 DSLQR Formulation

The intention decoder can be used for a wider and more intu-
itive range of applications apart from connecting it to the com-
puter mouse which will be explored in future work. Now we
will validate the proposed framework by running simulations
of a swarm of 50 agents to reach the desired human intention.
Below, we illustrate a particular execution of our framework.
Figure 7(a)-(d) indicate the desired human intention communi-
cated by the human. Using A = B = Q = Ih, R = 100Ih,
Qf = 1500Ih, κ1 = 106, κ2 = 0.05, κ3 = 2 × 104 the
planner was implemented for a N = 8 horizon problem with
m = 3 subsystems. The communication ranges are ν(l) ∈
{10, 40, 150}, corresponding to the three operating modes. Fig-
ure 7(e) illustrates the intermediate shapes resulting from the 8
horizon planner, starting from the current intention(triangle on
the left), to the desired intention(larger rotated quadrilateral)
on the right. The intermediate shapes look natural and the
progression is gradual and intuitive, which justifies the notion
of HID. Figure 7(f) describes the evolution of the cost from
equation (7) and switching strategy in a backward horizon. We
can see that switching occurs in a timely manner to maintain
minimum costs according to equation (7). Switching occurs
from 1st mode to the 2nd mode during the 2nd timestep. During
the 7th timestep another switching occurs to the 3rd operating
mode to maintain minimum cost. This is coherent with the
intuition of using larger communication radii for more sparse
swarms. As the scaling increases with every timestep the agents
are forced further apart and the cost of using a smaller com-
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e.g. Figure 5(b), the number of possible graphs over the agents
for different ν is very much reduced and remains constant for
scaled shapes. From now on, we consider this set is given by
{ν1, . . . , νm} by choosing appropriate communication radii.
Operating costs involved: To increase the speed of convergence
and to facilitate quicker interpretation by a human, we need
to maximize the notion of connectivity involving the second
smallest eigenvalue λN

2 or λW
2 of the respective Laplacian

matrices LN and LW . This can be found from the determinant
of the matrix G ∈ R(M−1)×(M−1) defined as G = F�LNF
with F ∈ RM×(M−1), F1M = 0 and F�F = I . Since
the determinant of a matrix is a product of its eigenvalues,
connectivity determined by λN

2 increases iff the determinant
of G increases. So the connectivity cost JCON(l) being in
formation z and operation mode ν at time l is given by:

JCON(ν, h) = −κ1 log det(κ2Gν(l)). (5)
To ensure JCON remains well scaled and positive we introduce
positive constants κ1 and κ2 respectively. Having ν correspond-
ing to a higher communication radius implies that we will be
using more energy to communicate and maintain communica-
tion links. This is encoded as a communication cost Jcom(l)
given by

JCOM(ν, h) = κ3 log(ν
2
ν1

�
MAν(h)1M ), (6)

where ν(l) is the communication range at time l and κ3 is a
positive constant used for scaling.
Adding these costs (4),(5),(6) together defines the total cost
used by the planner as:

J(u, ν) =
N−1∑
l=0

(h̄e(l)�Qν(l)h̄
e(l) + u(l)�Ru(l)+

h̄e(N)�Qf h̄
e(N). (7)

where Qν =

[
Q 0
0 JCON(ν) + JCOM(ν)

]
, h̄e =

[
he

1

]
, u =

[
u
0

]

and R =
[
R 0
0 1

]
. Observe that a solution to the above problem

requires the evaluation of all possible graph combinations for
different chosen controls u. By choosing the graphs based on
the communication radii, and considering a class of forma-
tions, we reduce significantly the number of possible graphs
to evaluate. In addition, we employ the DSLQR formulation
from (Zhang et al., 2009) to obtain the optimal set of u(l)
and ν(l) which minimizes J . Our optimization is done in the
following sequential manner: first we optimize in the sequence
of h̄e and u, then, given this, we optimize in the ν variable using
the DSLQR approach from (Zhang et al., 2009). This is further
illustrated and discussed in Section 5.3.

5. IMPLEMENTATION RESULTS
5.1 System Setup
The user has the choice to use either the MYO armband or
the mouse to interact with a GUI to control the formation of
a simulated swarm in a two dimensional environment. The
swarm controller developed in Section 4.3 essentially generates
waypoints for the swarm to follow, we assume holonomic
dynamics for the individual agents and assume they reach their
respective waypoints. We do not focus on collision avoidance,
which will be addressed in future work. We utilize the ROS
kinetic framework with Python scripting language to interface
with the MYO armband and control the mouse pointer. We
use Matlab to create the GUI shown in Figure 4, which uses
the mouse or the MYO armband as an input device. For the
formation controller we set the control gain α = 0.15 and
proportional constant kp = 0.03.
5.2 Intention Decoding
We performed tests to gauge the accuracy and speed of the pro-
posed HMM and Kalman Filter models. For the HMM model,

(a) Mouse movement with wearable (b) Mouse movement without wear-
able

Fig. 6. Aggregate results of tracing a pentagon.(Red) a) The
user specifies the shape by using MYO armband. (Blue) b)
The user specifies the shape by using the mouse. (Green)

Table 1. Error comparison mouse and wearable.

Mouse Wearable
Sl. no Loops Avg Error Total Error Loops Avg Error Total Error

1 7 0.026 122.57 5 0.038 179.26
2 8 0.028 129.40 5 0.037 174.74
3 9 0.031 147.02 7 0.048 222.07
4 8 0.031 148.92 7 0.05 235.27
5 9 0.035 161.50 5 0.029 132.72

some of our previous tests had given an accuracy levels of over
90% on an average (Suresh, 2016) for similar gestures and
framework. On preliminary tests we observed similar results
and hence, in the interest of space, we skip this accuracy test
for the HMM model. For the effectiveness of the arm movement
decoder, we compare the results of operating a mouse with and
without the MYO armband. Figure 6 represents the aggregate
results over 5 trials. The user was tasked to continuously trace
a pentagon which represents the human intention for a minute.
It can be seen from the Figure 6 that the results are similar for
both cases. Table 1 describes the error involved in each of the
trials. It can be seen that the errors involved are about the same
with both interfaces, however the speed of using the mouse is
higher than the other. This is also due to the fact that users are
accustomed to using the mouse for years and need time to adapt
to the new interface. But in the 5th trial it can be seen that the
performance with the wearable matches many trials with the
mouse, which shows that the user can adapt quickly to use the
new interface.

5.3 DSLQR Formulation

The intention decoder can be used for a wider and more intu-
itive range of applications apart from connecting it to the com-
puter mouse which will be explored in future work. Now we
will validate the proposed framework by running simulations
of a swarm of 50 agents to reach the desired human intention.
Below, we illustrate a particular execution of our framework.
Figure 7(a)-(d) indicate the desired human intention communi-
cated by the human. Using A = B = Q = Ih, R = 100Ih,
Qf = 1500Ih, κ1 = 106, κ2 = 0.05, κ3 = 2 × 104 the
planner was implemented for a N = 8 horizon problem with
m = 3 subsystems. The communication ranges are ν(l) ∈
{10, 40, 150}, corresponding to the three operating modes. Fig-
ure 7(e) illustrates the intermediate shapes resulting from the 8
horizon planner, starting from the current intention(triangle on
the left), to the desired intention(larger rotated quadrilateral)
on the right. The intermediate shapes look natural and the
progression is gradual and intuitive, which justifies the notion
of HID. Figure 7(f) describes the evolution of the cost from
equation (7) and switching strategy in a backward horizon. We
can see that switching occurs in a timely manner to maintain
minimum costs according to equation (7). Switching occurs
from 1st mode to the 2nd mode during the 2nd timestep. During
the 7th timestep another switching occurs to the 3rd operating
mode to maintain minimum cost. This is coherent with the
intuition of using larger communication radii for more sparse
swarms. As the scaling increases with every timestep the agents
are forced further apart and the cost of using a smaller com-
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(a)
Current
shape

(b)
Desired
Shape

(c) Desired rotation:
θd = 50◦

(d) Desired scaling:
sd = 11.6

(e) Planning and Execution (f) Switching cost throughout execution
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Fig. 7. Results of executing a particular desired behavior com-
municated by the human.

munication range ν = 10 rapidly increases. Whereas, the cost
of using the largest range ν = 150 remains almost constant
throughout because the connectivity and communication costs
mostly remain the same. Figure 7(e) shows the execution of the
swarm controller during the l = 2 horizon. Each of the red
dots represent individual agents of the swarm. We evaluate the
performance of the swarm controller (1) by measuring the error
with respect to the intermediate formations and centroid at each
time step t. The formation error and centroid error are measured
as efl (t) = ‖p(t) − s(l)z(l)R(θ(l))‖ and ecl (t) = ‖c(t) −
cd(l)‖ respectively in reaching the lth intermediate goal. The
evolution of these errors(y-axis) with respect to time t(x-axis)
is illustrated in Figures 7(g) and 7(h). We see that the swarm
successfully reaches every intermediate goal and finally reaches
the desired human intention.

6. CONCLUSIONS AND FUTURE WORK

In this work we have proposed and successfully implemented
a novel HSI framework for formation control, where the user
draws the desired shape using intuitive gestures, and the swarm
successfully depicts the drawn shape. We have combined di-
verse tools from control theory, network science, machine
learning, signal processing, optimization and robotics to cre-
ate this multi-disciplinary framework. Firstly, we have demon-
strated the effectiveness and intuitiveness of human interaction
using this framework, whose accuracy and speeds are compara-
ble to standard interaction devices. Next, we have proposed and
utilized a unique notion of human interpretable dynamics along
with switching systems to plan intermediate natural shapes for
the swarm to depict, which can be easily understood by the
human and the swarm. We have also developed, analyzed and
illustrated a novel decentralized formation controller capable
of reaching any shape and centroid in the 2-D space. Lastly,
we have integrated the framework by developing a GUI envi-
ronment which interacts with user by means of gestures, and
rest of the framework is encapsulated in the GUI using matlab
simulations.
Future work will involve validation of the proposed framework
with robustness towards noise and uncertainties. We also wish
to learn the Human Interpret-able dynamics from existing hu-
man behavior models and data.
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