
1732 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 4, APRIL 2019

Stochastic Source Seeking for Mobile Robots in Obstacle Environments
Via the SPSA Method

Eduardo Ramı́rez-Llanos and Sonia Martı́nez

Abstract—This paper considers a class of stochastic source-
seeking problems to drive a mobile robot to the minimizer of a
source signal. Our approach is first analyzed in an obstacle-free
scenario, where measurements of the signal at the robot location
and information of a contact sensor are required. We extend our
results to environments with obstacles under mild assumptions
on the step size. Our approach builds on the simultaneous pertur-
bation stochastic approximation idea to obtain information of the
signal field. We prove the practical convergence of the algorithms
to a ball whose size depends on the step size that contains the lo-
cation of the source. The novelty relies in that we consider nondif-
ferentiable convex functions, a fixed step size, and the environment
may contain obstacles. Our proof methods employ nonsmooth Lya-
punov function theory, tools from convex analysis, and stochastic
difference inclusions. Finally, we illustrate the applicability of the
proposed algorithms in a two-dimensional scenarios.

Index Terms—Algorithm design and analysis, intelligent robots,
nonlinear dynamical systems, optimization, stochastic systems.

I. INTRODUCTION

Stochastic source-seeking algorithms are used in mobile robotics to
find a source of a radiation-like signal in GPS-denied environments.
Applications range from biology, in understanding bacterial foraging,
to security, for search and rescue operations and chemical detection. In
a typical setting, the robot samples the signal emitted by the source by
exploring the environment through a stochastic motion. The samples
are used to steer and climb the gradient of the signal field, where
this field might represent the spatial distribution of magnetic force, a
thermal signal, or a chemical concentration.

Our approach is inspired by the simultaneous perturbation stochastic
approximation (SPSA) algorithm. The SPSA method is a well-known
algorithm usually applied to estimate the gradient of a cost function
from measurements. It was first proposed in [1] and since then it has
been successfully applied in many optimization problems, such as
parameter estimation, simulation optimization, resource allocation, and
robotics.

The SPSA method uses a monotonically decreasing step size to solve
an unconstrained optimization problem. In mobile robots, a decreasing
step size is not an option since it is impossible to navigate with infinite
precision, which is implied by a step size converging to zero. We
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propose a modified version of the SPSA algorithm that uses a small,
but constant, step size for environments that may contain obstacles.

A. Literature Review

There are many approaches to stochastic source seeking for mobile
robots in position-denied environments. An example is given in [2],
where an extremum seeking approach is employed with nonholonomic
vehicles, or the application of the SPSA algorithm to mobile robots
in [3] and [4]. We follow the approach provided in [3], where Azuma
et al. designed a controller to drive a robot to the source by applying
the SPSA algorithm without the use of the position information. The
algorithm they proposed uses standard assumptions on SPSA, such as
the thrice differentiability of the cost function and a monotonically
decreasing step size. Those assumptions fit very well in many applica-
tions where direct measurements of the gradient are not available. An
alternative is to use a small constant step size, which has been success-
fully applied in diverse areas, such as combustion control [5], mobile
robots [4], and tracking and adaptive control [6].

In [5], a variation of the SPSA algorithm is proposed that decreases
the oscillation against the constraints. The proposed algorithm is ap-
plied to an automotive combustion engine problem. Although [5] uses
a constant step size, no theoretical guarantees are given for fixed step
sizes. A model-free algorithm is proposed in [4], based on stochas-
tic approximation to find a source in environments with obstacles and
using a constant step size. A decreasing step size is not desirable be-
cause the robot might get trapped in a location where the magnitude of
the gradient is small. The convergence of the algorithm in [4] is shown
through an experiment in a real-world scenario; however, no theoretical
guarantees are provided.

In [6], an algorithm inspired by SPSA is proposed for unconstrained
optimization. The algorithm uses a constant step size to minimize a
cost function for three different tracking problems: a random walk,
an optimization of a unmanned aerial vehicle (UAV’s) flight, and a
load balancing. A drawback of their algorithm is that the cost function
is assumed to be once differentiable and it solves an unconstrained
optimization problem. In [7], He et al. studied the convergence of the
SPSA method when the cost function is nondiferentiable. However, the
analysis also employs a decaying step size.

Following a different line to the gradient-free algorithms, Taylor and
LaValle [8] proposed an approach to guide a robot through an unknown
obstacle environment using sensed information from a single intensity
source. The algorithm is similar in spirit to the well-known family
of bug algorithms [9]. Bug algorithms are classic reactive motion-
planning algorithms for point robots that have a limited knowledge of
their environment. With respect to previous algorithms in the litera-
ture, the approach provided in [8] requires less sensing information. A
drawback of their approach is the assumption on the availability of the
gradient generated by the intensity source, which in general may not
be true.
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B. Statement of Contributions

We propose a stochastic source-seeking algorithm to drive a robot
to an unknown source signal by only using measurements of the signal
field. Our algorithm builds on the SPSA algorithm. The novelty of our
approach is that we consider nondifferentiable convex functions, fixed
step size, and the environment may have obstacles. We prove practical
convergence to a ball whose size depends on the step size that contains
the location of the source. For the proof, we use the Lyapunov theory
together with tools from convex analysis and stochastic difference
inclusions. Our proof does not rely on the stochastic approximation
theory as is usually the case for algorithms in the literature based on
SPSA. Finally, we show the applicability of the proposed algorithm in
a two-dimensional (2-D) scenario for the source-seeking problem.

II. PRELIMINARIES

This section presents notation, notions of convex analysis, and
stochastic stability theory that are used in the following.

A. Notation

We denote by Z≥0 the set of nonnegative integers, Z> 0 the set of
positive integers, Rn

> 0 the positive orthant of Rn , for some n ∈ Z> 0 ,
and In the identity matrix of size n × n. For x = [x1 , . . . , xn ] ∈ Rn

with nonzero entries, we define x−1 � [x−1
1 , . . . , x−1

n ]�. The two-
norm of a vector is denoted by ‖.‖. A function f is o(h), and we
write f (x) = o(h(x)) as x → x0 , if limx→x 0

f (x )
h (x ) = 0. A function

f is O(h), and we write f (x) = O(h(x)) as x → x0 , if there exists
δ,M ∈ R> 0 such that ‖f (x)‖ ≤M‖h(x)‖ for ‖x− x0‖ ≤ δ. For a
closed setS ⊂ Rn andx ∈ Rn , |x|S = infy∈S |x− y| is the Euclidean
distance to S. A function φ : Rn → R is upper semicontinuous if
lim supi→+∞ φ(xi ) ≤ φ(x) whenever limi→+∞ xi = x. Given sets S
and T , a set-valued map, denoted by h : S ⇒ T , associates an element
of S with a subset of T . The symbol IS (x) denotes the indicator func-
tion of IS . A set-valued map M : Rp ⇒ Rn is outer semicontinuous
if, for each sequence (xi , yi ) → (x, y) as i→ +∞, in ∈ Rp × Rn ,
and satisfying yi ∈M (xi ) for all i ∈ Z≥0 , it holds that y ∈M (x).
A mapping M is locally bounded if, for each bounded set K ⊂ Rp ,
M (K) � ∪x∈KM (x) is bounded.

B. Convex Analysis Notions

The notions we introduce here follow [10] and [11]. Let f : Rn → R
be a closed, proper, and convex function. The subgradient of f is
the set-valued map ∂f : Rn ⇒ Rn defined by the subgradient set
∂f (x) = {ξ ∈ Rn | f (x′) ≥ f (x) + ξ�(x′ − x)}. We refer to df (x)
as the semiderivative function, which is the support function of
the nonempty, compact, and convex set ∂f (x), that is, df (x)(w) =
sup{ξ�w | ξ ∈ ∂f (x)}. The first-order expansion of f for any point x
is given by

f (x + w) = f (x) + df (x)(w) + o(‖w‖). (1)

We say that f satisfies the superquadratic growth condition if there
exists ρ > 0 such that

f (y) ≥ f (x) + df (x)(y − x) +
ρ

2
‖y − x‖2 (2)

for x, y ∈ Rn . In particular, a strongly convex function satisfies the
superquadratic growth condition. When f is differentiable, the su-
perquadratic growth condition is equivalent to assuming that ρIn ≤
∇2f (x), for x ∈ Rn .

C. Stability for Stochastic Difference Inclusions

The notions we introduce here follow [12]. Consider a discrete-time,
stochastic difference inclusion

x+ ∈ Hα (x, v+ ), v ∼ μ (3)

where x+ is the state after an instantaneous change,Hα : Rn × Rm ⇒
Rn is a set-valued map for some n,m ∈ Z> 0 parameterized by
α ∈ R> 0 , which assigns nonempty set values, and x ∈ Rn is the state.
The notation v+ and v refers to sequences of random input variables
as explained next. Consider a complete probability space (Ω,F ,P ),
where Ω denotes the set of all possible outcomes, F is the σ-field as-
sociated with Ω, and P is the probability function that assigns a prob-
ability to events in F . In particular, we assume B(Rm ) ⊆ F , where
B(Rm ) is the Borel field. In (3), we use v+ and v as a place holder for
a sequence of independent, identically distributed (i.i.d.) random vari-
ables v � {vk }∞k=0 ; that is, P (vk ∈ F ) = P ({w ∈ Ω | vk (w) ∈ F })
is well defined and independent of k for each F ∈ B(Rm ). We use Fk

to denote the collection of sets {w ∈ Ω | (v0 (w), . . . ,vk (w)) ∈ F },
where F ∈ B((Rm )k+1 ), which are the sub-σ-fields of F that form
the minimal filtration of the sequence v. Due to the i.i.d. property, each
random variable has the same probability measureμ : B(Rm ) → [0, 1]
defined as μ(F ) � P (vk ∈ F ) and, for almost all w ∈ Ω

E[f (v0 , . . . ,vk ,vk+1 )|Fk ](w)

=
∫

Rm

f (v0 (w), . . . ,vk (w), v)μ(dv)

for each k ∈ Z≥0 and each measurable f : (Rm )k+2 → R.
The sequence of random variables x � {xk }k≥0 , where xk :

dom xk ⊂ Ω → Rn , k ∈ Z≥0 with x0 = x for all w ∈ Ω and
dom xk+1 ⊂ dom xk , is called a random process starting at x ∈ Rn .
We say that x is adapted to the natural filtration of v if xk+1 isFk mea-
surable for each k ∈ Z≥0 , i.e., x−1

k+1 (F ) ∈ Fk for each F ∈ B(Rm ).
Let x be a random process starting from x ∈ Rn , which is adapted

to the natural filtration of v. Let Jx : Ω → Z≥0 ∪ {∞} be a ran-
dom variable that denotes the number of elements in the sequence
x. Then, x is a random solution of (3) starting at x ∈ Rn , denoted
as x ∈ S(x), if x0 = x, xk+1 (w) ∈ Hα (xk (w),vk+1 (w)) for all
w ∈ dom xk+1 � {w ∈ Ω | k + 1 ≤ Jx} and k ∈ Z≥0 . We impose
the following regularity condition on H.

Assumption 1: H is locally bounded and v → graph(Hα (·, v)) �
{(x, y) ∈ Rn × Rn | y ∈ Hα (x, v)} is measurable with closed values.

Definition 1: (Mean-square practically exponentially stable (MSP-
ES) equilibrium): We say that the equilibrium point of (3) is MSP-ES
if there exists α∗ ∈ (0, 1), positive real numbers β, λ < 1

α ∗ , γ, and η
such that for all α ∈ (0, α∗], we have

E[‖xk ‖2 ] ≤ β(1 − αλ)k ‖x0‖2 + γαη ∀k ∈ Z≥0 .

Proposition 1 (see [13]): Consider the system (3) under
Assumption 1. If there exists an upper semicontinuous function
V : Rn → R≥0 , positive constants c1 , c2 , λ, K , α∗ ∈ (0, 1), and
η > 1 such that for all α ∈ (0, α∗)

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∫
Rm

max
h∈Hα

V (h)μ(dv) ≤ (1 − αλ)V (x) + αηK (4)

then, the equilibrium point is MSP-ES for (3). •

III. PROBLEM STATEMENT

This section describes the stochastic source-seeking problem for
GPS-denied environments. The problem has been studied for obstacle-
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free environments in, e.g., [2], [3], and [4]. In particular, we follow
the approach provided in [3], except that we consider boundaries and
obstacles in the environment. Suppose that a sufficiently small robot
moves in Rn and its motion is described in the world coordinate frame
by

(
ṗ�, θ̇�, φ̇�

)�
= G(p(t), θ(t), φ(t))u(t) (5)

whereG : Rn × Rn 1 × Rn 2 → R(n+n 1 +n 2 )×m is a function describ-
ing the robot dynamics, p(t) ∈ Rn and θ(t) ∈ Rn 1 are the transla-
tional and orientational positions in the world of coordinate frame, and
φ(t) ∈ Rn 2 and u(t) ∈ Rm are the internal posture and the control
input, respectively.

Let E be the environment where the robot moves, which is assumed to
be convex and compact. A tower broadcasts a signal, which is modeled
by an intensity function f over Rn . Let f : Rn → R be the signal
mapping, in which f (p) yields the intensity at p ∈ Rn , generated from
a tower at p∗. The location of the tower p∗ can be or not in E . The
environment E and the signal mapping f are unknown to the robot.
The robot aims to solve the following optimization problem without
knowledge of its absolute position (p, θ)

min
p∈E

f (p) (6)

by only using (noisy) measurements of f (p(t)). We consider two sce-
narios for E : when E does not have obstacles and when it does. For
the obstacle-free scenario, we assume E is a convex compact set. In
both scenarios, the problem is to design an algorithm with guaranteed
practical convergence to a small ball containing p∗. When p∗ /∈ E , the
robot should converge in practical way to a ball containing the closest
point from E to p∗. We cannot use standard algorithms based on the
explicit form of f or its gradient because the expression for f is not
available. The robot only has measurements given by sensors, and the
measurements of f may be noisy but we neglect this noise.

The robot is equipped with two sensors. First, a contact sensor lE
that indicates whether the robot is touching the environment boundary
or any obstacle inside the environment, i.e., lE(p) = 1 if p ∈ ∂E and
lE(p) = 0 otherwise. Second, the robot is equipped with an intensity
sensor lI . It indicates the strength of the signal from position p, i.e.,
lI (p) = f (p). Since the robot does not have position information in
the coordinate frame, it is necessary to adapt (5) to a body fixed frame.
The position of the robot in the body frame at time t is given by⎛

⎝ z(t)
ψ(t)
ϕ(t)

⎞
⎠ =

⎛
⎝R(−θ(τ ))(p(t) − p(τ ))

θ(t) − θ(τ )
φ(t)

⎞
⎠

where t expresses a future time after τ , (z(t), ψ(t), ϕ(t)) ∈ Rn ×
Rn 1 × Rn 2 are the new coordinates, and R(−θ(τ )) is the rotation
matrix of an angle −θ(τ ).

IV. PROPOSED ALGORITHM FOR THE OBSTACLE-FREE SCENARIO

In this section, we assume that there are no obstacles in E , where E is
described by a convex compact set. To find p∗, we propose the following
algorithm, which is similar in spirit to the stochastic approximation
algorithm for fixed step size:

pk+1 = ΠE [pk − αg(pk , δ(pk , Rk vk ), Rk , vk )] (7)

where k ∈ Z≥0 and we assume that Rk is a sequence of rotation
matrices set a priori; see below a justification of terms for the al-
gorithm. To simplify the notation for aid in analysis, we write the
above algorithm as a discrete-time dynamical system as follows
p+ = ΠE [p − αg(p, δ(p, Rv), R, v)], where p ∈ Rn is the current

state, p+ ∈ Rn is the state at the next time step, ΠE is the projec-
tion on a convex compact set E (i.e., ΠE [p] = argminz∈E ‖z − p‖2 ),
and g : Rn × R2 × SO(n) × Rn → Rn is given as follows:

g(p, δ(p, Rv), R, v)

=

{
Rf (p+ δ1 Rv )−f (p−δ2 Rv )

δ1 + δ2
v−1 , if δ1 + δ2 > 0

0, otherwise.
(8)

Here, f : Rn → R is the function to be minimized, α ∈ R> 0 is the
step size, andR ∈ SO(n) is the uncertain time-varying rotation matrix,
which by definition is an orthogonal matrix. In (8), δ = (δ1 , δ2 ) is a
mapping δi : Rn × Rn → R≥0 , for i ∈ {1, 2}, which is given by

δ1 (p, Rv) =
{
δ̄1 , if p + δ̄1Rv ∈ E
dist+Rv (p, ∂E), otherwise

δ2 (p, Rv) =
{
δ̄2 , if p − δ̄2Rv ∈ E
dist−Rv (p, ∂E), otherwise

where δ̄1 , δ̄2 ∈ R≥0 are given constants satisfying δ̄1 + δ̄2 > 0,
dist±Rv (p, ∂E) is the distance between the point p and the set ∂E
along the direction ±Rv, and the random variable {vk }k∈Z≥0 takes
values in {−1, 1}n . We assume that there is a routine that gives the
distance from p to the position where the robot found the obstacle. This
can be designed using information of the acceleration and the contact
sensor lE .

To summarize, the algorithm in (7) is composed of two steps: first,
the exploration step, which is given when the robot computes δ. In this
step, the robot moves to two positions in the directions +Rv or −Rv.
Note here that the time-varying rotation matrix R helps the robot to
explore any point in a ball centered at the robot position. For example,
it is enough to set it up equal to the identity matrix or cover repeatedly a
set of fixed matrices. This ball can have either a radius given by δ1 or δ2 .
Second, the gradient approximation step, which consists of sampling
the intensity at each location of the exploration step, i.e., sampling at
±Rv. With that information, the robot computes g and moves in its
direction, where g can be seen as an approximation to the gradient,
see Lemma 1. To handle the implementation of the projection operator
in (7), we use (22). We first analyze (7) and then as a corollary explain
how the results hold for (22). We make the following assumption on
the sequence of random variables v.

Assumption 2: (On the characteristics of the random input): The
sequence of random variables {vk }k∈Z≥0 , defined on a probability
space (Ω,F ,P ) with vk : Ω → {−1, 1}n , is i.i.d. with E[vk ] = 0 for
each k ∈ Z≥0 .

Remark 1: For the easiness of presentation, we neglect the pres-
ence of noise in the observations of f . However, from the analysis in
Section V, practical convergence in expected value to the tower can still
be achieved under appropriate statistical properties on the noise. •

V. CONVERGENCE FOR THE OBSTACLE-FREE SCENARIO

In this section, we derive the convergence results for the algorithm
in (7). In particular, we show practical convergence in probability to
a ball with fixed radius depending on α and δ̄1 + δ̄2 under different
assumptions. We are able to characterize the size of this ball under the
assumption of strong convexity of the cost function as shown in Theo-
rem 1. When we do not have enough information on the cost function,
like differentiability, we prove practical convergence in probability to
a ball that can be made arbitrarily small by tuning α and δ̄ as shown in
Theorem 2. We begin by providing two supporting lemmas.

Lemma 1: (SPSA approximation to the gradient): Let
Assumption 2, on the characteristics of the random input, hold.
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Assume that f is convex, finite, and twice differentiable. Then, if
δ1 + δ2 > 0, we have

gi (p, δ, R, v) =
∂f (p)
∂pi

+ bi + ci (9)

where bi =
∑

l ,j,q ,j �= l RilRq j
v j
v l

∂ f (p )
∂ p q

, for i ∈ {1, . . . , n}, c =
Rv−1

2(δ1 + δ2 ) v
�R�(δ2

1∇2f (p1 ) − δ2
2∇2f (p2 ))Rv, and pj = p + δ′j Rv

for some δ′j ∈ [0, 1] and j ∈ {1, 2}. Otherwise, if δ1 + δ2 = 0, we
have gi (p, δ, R, v) = 0 for i ∈ {1, . . . , n}.

Proof: For the case when δ1 + δ2 = 0, by definition, it follows that
gi (p, δ, R, v) = 0. Otherwise, when δ1 + δ2 > 0, by using a second-
order Taylor expansion around p, there exists δ′1 ∈ [0, 1] and p1 =
p + δ′1Rv such that

f (p + δ1Rv) = f (p) + δ1v
�R�∇p f (p) +

1
2
δ2

1 v
�R�∇2f (p1 )Rv.

(10)
Similarly, there is δ′2 ∈ [0, 1] and p2 = p − δ′2Rv such that

f (p − δ2Rv) = f (p) − δ2v
�R�∇p f (p) +

1
2
δ2

2 v
�R�∇2f (p2 )Rv.

(11)
Subtracting (11) from (10) and dividing the result by δ1 + δ2

f (p + δ1Rv) − f (p − δ2Rv)
δ1 + δ2

= v�R�∇p f (p)

+
1

2(δ1 + δ2 )
v�R�(δ2

1∇2f (p1 ) − δ2
2∇2f (p2 ))Rv.

Multiplying the last equation by Rv−1 we have

R
f (p + δ1Rv) − f (p − δ2Rv)

δ1 + δ2
v−1 = v�R�∇p f (p)Rv−1

+
Rv−1

2(δ1 + δ2 )
v�R�(δ2

1∇2f (p1 ) − δ2
2∇2f (p2 ))Rv. (12)

We analyze next the ith component of the first term of the right-hand
side (RHS) of the last equation as follows:

(
v�R�∇p f (p)Rv−1

)
i
=

n∑
l=1

Ril

vl

n∑
j=1

vj

n∑
q=1

Rqj
∂f (p)
∂pq

=
n∑
l=1

Ril

vl

n∑
j �= l

vj

n∑
q=1

Rqj
∂f (p)
∂pq

+
n∑
l=1

Ril
vl
vl

n∑
q=1

Rql
∂f (p)
∂pq

=
∂f (p)
∂pi

+ bi (13)

where we have used the fact that R is an orthogonal matrix. Replac-
ing (13) in (12), (9) follows. �

Lemma 2 (Optimality bounds): Assume f is convex, finite, and
satisfies the superquadratic growth condition in (2). Then, for all
ξ ∈ ∂f (p) and p, p∗ ∈ Rn , it holds that

(p − p∗)�ξ ≥ ρ

2
‖p∗ − p‖2 (14)

and

‖ξ‖ ≥ ρ

2
‖p∗ − p‖. (15)

Proof: We prove first inequality (14). By the assumption on the
superquadratic growth condition (2) it holds that f (p∗) ≥ f (p) +
(p∗ − p)�ξ + ρ

2 ‖p∗ − p‖2 , for all p, p∗ ∈ Rn , and ξ ∈ ∂f (p). Sub-
tracting f (p) from both sides, we have f (p∗) − f (p) ≥ (p∗ − p)�ξ +
ρ
2 ‖p∗ − p‖2 . By noticing that f (p∗) − f (p) ≤ 0, we have 0 ≥ (p∗ −
p)�ξ + ρ

2 ‖p∗ − p‖2 . Then, (14) follows. Next, we prove (15). By

noting that the RHS of (14) is bigger or equal than zero, it follows
|(p − p∗)�ξ| ≥ ρ

2 ‖p∗ − p‖2 . By using the Cauchy–Schwarz inequal-
ity, it follows that ‖p − p∗‖‖ξ‖ ≥ ρ

2 ‖p∗ − p‖2 , which implies (15). �
The next theorem shows the algorithm convergence when f is twice

differentiable.
Theorem 1: (Convergence when f is twice differentiable): Let

Assumption 2, on the characteristics of the random input, hold. Assume
that f is convex, finite, twice differentiable, ρIn ≤ ∇2f (p) ≤ ΓIn , and
‖∇p f (p)‖ ≤M . Then, for any initial state p0 , the solution p∗ of the
system (7) is MSP-ES with ultimate bound O = E\Z , where

Z =
{
p ∈ E|‖p − p∗‖2 ≥ α

ρ
(M 2 (n2 + 2) +

1
4
(δ̄1 + δ̄2 )2Γ2n3 )

}
.

(16)
Proof: Without loss of generality assume δ1 (p, Rv) + δ2 (p, Rv)

> 0. This is the case because, at any time k > 0 for which δ1 (p, Rv) +
δ2 (p, Rv) = 0, with probability one, the dynamics in (7) will gen-
erate a feasible direction in finite time in E satisfying δ1 (p, Rv) +
δ2 (p, Rv) > 0.

Without loss of generality assume p∗ ∈ E (the projection of p∗ on
E is in E and unique.) By the nonexpansive property of the projection
operation, the dynamics in (7), and the fact that p∗ ∈ E , we have

‖p+ − p∗‖2 = ‖ΠE [p − αg(p, δ(p, Rv), R, v)] − p∗‖2

≤ ‖p − αg(p, δ(p, Rv), R, v) − p∗‖2

= ‖p − α(∇p f (p) + b + c) − p∗‖2

= ‖p − p∗‖2 − 2α(∇p f (p) + b + c)�(p − p∗)

+ α2‖∇p f (p) + b + c‖2

where bi =
∑

l ,j,q ,j �= l RilRq j
v j
v l

∂ f (p )
∂ p q

, for i ∈ {1, . . . , n}, c =
Rv−1

2(δ1 + δ2 ) v
�R�(δ2

1∇2f (p1 ) − δ2
2∇2f (p2 ))Rv, pj = p + δ′j Rv for

some δ′j ∈ [0, 1] and j ∈ {1, 2} (see Lemma 1 to learn how to get
b and c).

Let V : Rn → R≥0 , V = ‖p − p∗‖2 , and define ΔV = ‖p+ −
p∗‖2 − ‖p − p∗‖2 . We have

ΔV ≤ −2α(∇p f (p) + b + c)�(p − p∗) + α2‖∇p f (p) + b + c‖2 .

By using (14), we have that −(p − p∗)�∇p f (p) ≤ − ρ
2 ‖p − p∗‖2 . It

follows that

ΔV ≤ −αρ‖p − p∗‖2 − 2α(b + c)�(p − p∗)

+ α2‖∇p f (p) + b + c‖2 .

By taking expectation operator E[V (p+ )|Fk ], since vk is i.i.d.
with E[vk ] = 0 for each k ∈ Z≥0 , and by noticing that E[v−1

k ] =
E[vk ], it implies that E[b] = 0. Next, we show that E[ci ] = 0 for
i ∈ {1, . . . , n}. We rewrite c = m(v�Hv)Rv, where m = 1

2(δ1 + δ2 ) ,

H � R�(δ2
1∇2f (p1 ) − δ2

2∇2f (p2 ))R, and H = (hij ), and we use
the fact that v = v−1 . Then

E[ci ] = mE

[
n∑
l=1

Rilvl

n∑
s=1

vs

n∑
j=1

hsj vj

]

= m(qi + zi )

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 23,2023 at 00:43:05 UTC from IEEE Xplore.  Restrictions apply. 



1736 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 4, APRIL 2019

where qi = E[Riivi
∑n

s=1 vs
∑n

j=1 hsj vj ] and zi = E[
∑

l �= i Ril vl∑n
s=1 vs

∑n
j=1 hsj vj ]. Expanding qi

qi = E

⎡
⎣Riivi

⎛
⎝vi

n∑
j=1

hij vj +
∑
s �= i

vs

n∑
j=1

hsj vj

⎞
⎠
⎤
⎦

= RiiE

⎡
⎣hii v3

i + v2
i

∑
j �= i

hij vj + vi
∑
s �= i

v2
s hss

+ vi
∑
s �= i

vs
∑
j �= s

hsj vj

⎤
⎦

= 0

where we have used the assumption that vk is i.i.d. with E[vk ] = 0
and the fact that v3

i = vi for i ∈ {1, . . . , n}. Analogous to the last
procedure, we expand zi

zi = E

⎡
⎣∑
l �= i

Ril v
2
l

n∑
j=1

hlj vj +
∑
l �= i

Ril vl
∑
s �= l

vs

n∑
j=1

hsj vj

⎤
⎦

= E

⎡
⎣∑
l �= i

Ril v
3
l hll +

∑
l �= i

Ril v
2
l

∑
j �= l

hlj vj +
∑
l �= i

Ril vl
∑
s �= l

v2
s hss

+
∑
l �= i

Ril vl
∑
s �= l

vs
∑
j �= s

hsj vj

⎤
⎦

= 0.

Thus, E[c] = 0. Therefore

E[ΔV |Fk ] ≤ −αρ‖p − p∗‖2 + α2 (‖∇p f (p)‖2

+ E[‖b‖2 + ‖c‖2 |Fk ]). (17)

Note that E[‖c‖2 ] ≤ 1
4 Γ2n3 (δ1 + δ2 )2 and from (13), we have

E[‖b‖2 |Fk ] = E[‖v�R�∇p f (p)Rv−1 −∇p f (p)‖2 |Fk ]

≤ E[‖v�R�‖2‖∇p f (p)‖2‖Rv−1‖2 + ‖∇p f (p)‖2 |Fk ]

≤M 2 (n2 + 1)

where we have used ‖∇p f‖ ≤M . Using above upper bounds and
replacing them in (17), one has

E[ΔV |Fk ] ≤ −αρV (p) +
α2

4
(δ1 + δ2 )2Γ2n3 + α2M 2 (n2 + 2).

It follows that E[ΔV |Fk ] ≤ −αρV (p) + α2J, where J = 1
4 (δ1 +

δ2 )2Γ2n3 +M 2 (n2 + 2). Reorganizing these terms, we have
E[V (p+ )|Fk ] ≤ (1 − αρ)V (p) + α2J. Therefore, by Proposition 1,
the equilibrium point is MSE-ES. Notice that the max inside the inte-
gral in (4) simplifies to a point because we do not have a differential in-
clusion. The set O given in (16) follows by noticing thatE[ΔV |Fk ] ≤
0 if ‖p − p∗‖2 ≥ O and by noticing that δ1 + δ2 ≤ δ̄1 + δ̄2 . �

Remark 2: In Theorem 1, the knowledge of Γ and M are not re-
quired to prove convergence. Given that E is assumed to be compact,
the existence of Γ is guaranteed. Since f is assumed locally Lipschitz,
then there always exist a finite M such that ‖∇p f (p)‖ ≤M . We use
those values to characterize the size of the ball where the trajectories
converge to in expectation. •

If f is nondifferentiable, we are not able to characterize the size
of the ball as in Theorem 1. However the next result shows practical

convergence in probability to p∗ and that this ball can be made arbi-
trarily small by reducing α and δ̄1 + δ̄2 without the assumption on the
superquadratic growth condition on f .

Theorem 2: (Convergence when f is nonsmooth): Let
Assumption 2, on the characteristics of the random input, hold.
Assume that f is convex and finite with a unique minimizer p∗. Then,
for any initial state p0 , the solution p∗ of the system (7) is MSP-ES.

Proof: The proof employs the same Lyapunov function as that of
Theorem 1, and the nonexpansive property of the projection operator
to bound its difference. However, in order to find upper bounds, we
can not resort to the differentiability properties of f and we do not
use the assumption on its superquadratic growth condition. Since f is
assumed to be convex and locally Lipschitz, then the set-valued map
∂f is locally bounded, upper semicontinuous, and takes nonempty,
compact, and convex values [14]. Using the last fact, the sup in (1) can
be replaced by a max, and then

f (p + δ1Rv) = f (p) + δ1v
�R�ξ̄ + o(δ1‖Rv‖) (18)

where ξ̄ = argmaxξ∈∂ fs (p ){ξ�Rv}. Similarly

f (p − δ2Rv) = f (p) − δ2v
�R�ξ + o(δ2‖Rv‖) (19)

where ξ = argminξ∈∂ f (p ){ξ�Rv}. Subtracting (19) from (18) and
dividing the result by δ1 + δ2 , we have

f (p + δ1Rv) − f (p − δ2Rv)
δ1 + δ2

=
1

δ1 + δ2

(
v�R�(δ1 ξ̄ + δ2ξ)

+ o(δ1‖v‖) − o(δ2‖v‖)
)

where we have used the assumption thatR is an orthogonal matrix, then
o(δi‖Rv‖) = o(δi‖v‖) for i ∈ {1, 2}. Multiplying the last equation by
Rv−1 , we have

f (p + δ1Rv) − f (p − δ2Rv)
δ1 + δ2

Rv−1 = v�R�(δ1 ξ̄ + δ2ξ)
Rv−1

δ1 + δ2

+
Rv−1

δ1 + δ2
(o(δ1‖v‖) − o(δ2‖v‖)). (20)

We analyze the ith component of the first term of the RHS of the last
equation to obtain

(
v�R�(δ1 ξ̄ + δ2ξ)

Rv−1

δ1 + δ2

)
i

=
n∑
l=1

Ril

vl

n∑
j=1

vj

n∑
q=1

Rqj

δ1 ξ̄q + δ2ξq
δ1 + δ2

=
δ1 ξ̄i + δ2ξi
δ1 + δ2

+ bi (21)

where bi =
∑

l ,j,q ,j �= l RilRq j
v j
v l

δ1 ξ̄ q + δ2 ξ q
δ1 + δ2

. Replacing (21) in (20), it
follows that

f (p + δ1Rv) − f (p − δ2Rv)
δ1 + δ2

Rv−1 =
δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c

where c = Rv−1

δ1 + δ2
(o(δ1‖v‖) − o(δ2‖v‖)). Then, one has

g(p, δ(p, Rv), R, v) =
δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c.

With probability one, we can assume that the dynamics in (7) generates
a feasible direction in finite time such that δ1 (p, Rv) + δ2 (p, Rv) > 0.
We can also assume that p∗ ∈ E .
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In addition, resorting to the nonexpansive property of the projection
operation

‖p+ − p∗‖2 = ‖ΠE [p − αg(p, δ(p, Rv), R, v)] − p∗‖2

≤ ‖p − αg(p, δ(p, Rv), R, v) − p∗‖2

≤ ‖p − α
( δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c

)
− p∗‖2 .

It follows

‖p+ − p∗‖2 ≤ ‖p − p∗‖2 + α2‖ δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c‖2

− 2α

(
δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c

)�

(p − p∗).

LetV : Rn → R≥0 ,V = ‖p − p∗‖2 , and define ΔV = ‖p+ − p∗‖2 −
‖p − p∗‖2 . Then, we have

ΔV ≤ −2α

(
δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c

)�

(p − p∗)

+ α2‖ δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c‖2 .

Let fs : Rn → R be a convex function satisfying the superquadratic
growth condition for some ρ ∈ R> 0 such that fs (p∗) = f (p∗), ξ�s (p −
p∗) ≤ ξ�(p − p∗), ξ ∈ ∂f (p), and ξs ∈ ∂fs (p) for all p ∈ E . Notice
that fs always can be found since p∗ is assumed unique and E is a
compact set. Using the last fact, there exists ρ > 0 such that −ξ�(p −
p∗) ≤ − ρ

2 ‖p − p∗‖2 . Thus

ΔV ≤ −αρδ1 + δ2

δ1 + δ2
‖p − p∗‖2 − 2α(b + c)�(p − p∗)

+ α2

∥∥∥∥∥
δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c

∥∥∥∥∥
2

.

By noticing that E[b] = E[c] = 0, one has

E[ΔV |Fk ] ≤ −αρ‖p − p∗‖2 + α2E[‖ δ1 ξ̄ + δ2ξ

δ1 + δ2
+ b + c‖2 |Fk ].

From here, the proof follows similar steps as the proof of Theorem 1,
where we use ξ instead of ∇p f , and consider O(1) terms instead of
the upper bound of the Hessian. We omit the steps for conciseness. �

When the robot moves in a GPS-denied environment, the implemen-
tation of the projection operator ΠE in (7) is challenging. However, if
p∗ ∈ E and we use

p+ = p − α(p, δ(p, Rv), R, v)g(p, δ(p, Rv), R, v) (22)

where α : Rn × R2 × SO(n) × Rn → R is defined as

α(p, δ(p, Rv), R, v)

=

{
ᾱ, if p − ᾱg(p, δ(p, Rv), R, v) ∈ E
dist+ g (p, ∂E), otherwise

and all other variables defined as in (8) for given ᾱ ∈ R> 0 . Then, the
results of Theorem 2 hold as is shown in the following corollary.

Corollary 1: Let Assumption 2, on the characteristics of the random
input, hold. Assume that f : Rn → R is convex and finite with a unique
minimizer p∗ ∈ E . Then, for any initial state p0 ∈ E , the solution p∗ of
the system (22) is MSP-ES.

Proof: The proof follows by noticing that, whenever the robot
detects a boundary, it stops until the next iteration of the dynamics
in (22). Then, three considerations have to be taken into account as in
Theorem 2. First, notice that we can assume δ1 (p, Rv) + δ2 (p, Rv) >
0 similarly as before. Second, the robot stops at any time k > 0 while
executing (22) only when it finds a boundary. Then, the positive term
in the RHS of the upper bound of E[ΔV |Fk ] given in the proof of
Theorem 2 parameterized by α is less or equal, with probability one, to
the same positive term parameterized by ᾱ. The last fact is explained
by noticing that α ≤ ᾱ. Third, when the robot is in ∂E , it moves to a
feasible direction in a finite time, with probability one. �

VI. PROPOSED ALGORITHM AND CONVERGENCE ANALYSIS FOR

ENVIRONMENTS WITH OBSTACLES

In this section, we propose an algorithm to find the tower when there
are obstacles in the environment and the intensity function f is convex.
We introduce some notation used in this section. Let O be a disjoint
set of obstacles. EachO ∈ O is assumed to be closed with a connected
piecewise-analytic boundary that is finite in length. Furthermore, the
obstacles in O are pairwise disjoint. There may be a countably infinite
number of obstacles, but at most a finite number are contained in any
fixed disk. The obstacle set O may contain an outer obstacle Oouter

that is unbounded; all other obstacles are bounded. Here, we consider
a point robot that moves in R2 according to a kinematic differential
drive model. We use the following motion primitives that are used in
Algorithm 1.

Ufwd : The robot executes the dynamics in (22), stopping only if it
contacts an obstacle.

Ufo l : The robot travels around the obstacle boundary clockwise, main-
taining contact to the right at all times, with a fixed step size ᾱ,
and executing g(p, δ, Rv) at every time step. The robot stops
implementing Ufol only when g(p, δ, Rv) points to a feasible
direction (i.e., a direction that gives a point in E \ O).

Remark 3: The proposed motion primitives are inspired by those
in [8]. However, notice that Ufol is different from the Ufol proposed
in [8] as the latter is defined to stop at a local minimum. Our motion
primitive is defined to stop when the estimated gradient points toward
a feasible direction. •

Due to the fixed step size, it could be that the robot does not detect
a point to leave an obstacle when traveling around it. If this happens,
the robot will be trapped in the obstacle for all time. This case can
be prevented under the following conditions. Assume that we know
the Lipschitz constant L, i.e., |f (p) − f (p′)| ≤ L‖p − p′‖, then we
consider a constantB such thatB � L. We defineC ∈ R> 0 to indicate
an upper bound of E[‖b + c‖] for all p ∈ E \ O.

Assumption 3: (On the step size given B): We assume that ᾱ is
small enough such that ᾱmax{B,C} is strictly less than the minimum
distance between two separated obstacles. In addition, we assume that
the robot is able to circumnavigate any obstacle O ∈ O using the
constant step size ᾱ. Finally, we assume δ̄1 and δ̄2 less or equal than ᾱ.

The following lemma is used in the main result of this section, given
in Theorem 3.

Lemma 3 (see [8]): For every obstacle boundary∂O and every pos-
sible tower location R2 \O, there exists at least one intensity local
minimum p ∈ ∂O for which the topological disk centered at the tower
(0, 0) with radius ‖p‖ is disjoint from the interior of O.

Theorem 3: (Convergence with obstacles in the environment):
Let Assumption 2, on the characteristics of the random input, and
Assumption 3, on the step-size given B and C , hold. Assume that f
is convex and finite with a unique minimizer p∗. Then, for any initial
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Algorithm 1: Algorithm for convex intensity functions.

1: IL = f (p)
2: while not hitting an obstacle do
3: execute Ufwd

4: end while
5: IH = f (p)
6: while f (p) − ᾱB ≥ IH do
7: execute Ufol

8: end while
9: go to Step 1

p0 ∈ E \ O, Algorithm 1 causes the robot to reach a ball of radius ᾱ
containing the tower with probability one.

Proof: Since f is assumed to be convex, when the robot moves
using the estimated gradient in Step 3, the average distance to the tower
is decreased, as shown in Theorem 2. This implies that, on average, f
is nonincreasing as the robot moves. In fact, f is decreasing because on
average, the gradient points to the greatest decrease rate of the function
f .

After the execution of Steps 2–4 for the first time, either the ball of
size depending on ᾱ that contains the tower is located or the robot hits
the boundary of an obstacle. If the former happens, then the algorithm
terminates successfully. Thus, let us assume the latter. By Step 5, IH
stores the intensity at the boundary point where the robot hits the
obstacle. At this point, the robot follows around the obstacle.

It might seem that an infinite loop is possible by failure to satisfy
the condition of Step 6 or by the motion being blocked by an obstacle
boundary. However, this is not the case because of the following three
facts: first, let denote by Pm the set of points p ∈ ∂O where there is
a local minimum. By Lemma 3, Pm is not empty and second, there
exists pm ∈ Pm for which the gradient ∇p f (pm ) (or an element of
the generalized gradient, when f is nondifferentiable) points to a fea-
sible direction (i.e., a direction that gives a point in E \ O). Then, in
expectation g(pm , δ, Rv) points to a feasible direction for such points.
In addition, third, by the definition of B and because the robot fol-
lows the obstacle boundary while the condition in Step 6 holds, the
robot keeps detecting all balls of radius ᾱB containing all the local
minima of ∂O. In particular, the robot will reach a ball of radius ᾱB
containing a minimum point pm as in Lemma 3. Because pm is a local
minimum it must be that f (pm ) ≤ IH . Now, the robot reaches p′ such
that ‖pm − p′‖ ≤ ᾱ. By the Lipschitz condition on f , it holds that
f (p′) < f (pm ) + ᾱB, which implies that f (p′) < IH + ᾱB. Thus,
the while loop will be exited at this point p′. Then, IL is reassigned
to IL = f (p′) by the re-execution of Step 3, and the robot leaves the
obstacle by reapplying Steps 2–4.

When the robot leaves the obstacle through this point, it is guaran-
teed that it will not contact a different obstacle in the next iteration since
it is assumed that all obstacles are separated by a distance bigger than
ᾱmax{B,C}. That is, a deadlock by bouncing between obstacles is
not possible. By Step 6, the leaving point from the obstacle boundary
∂O is closer to the goal than the hitting point. Thus, even if an obstacle
boundary ∂O is contacted a finite number of times due to nonconvex-
ities, the robot will eventually leave the obstacle behind after a finite
number of hits. In an environment with a finite number of obstacles,
the robot will reach a ball that contains the minimizer of the intensity
function. �

Remark 4: There are results available in the literature on tight upper
bounds on the length of bug paths when the gradient information is
known, which characterizes the running time to be of the order of this
length. For the unknown gradient case, an upper bound on the expected

Fig. 1. Evolution of the mobile robot for f = (p1 − 0.9)2 + |p1 − 0.9| +
(p2 − 1)2 + |p2 − 1| with a box constraint p ∈ [0, 1]2 . The level sets of f
are shown in colors and the trajectory of the robot is shown in black.

Fig. 2. Evolution of the robot for f = (p1 − 5)2 + |p1 − 5| + (p2 −
5)2 + |p2 − 5| with a box constraint p ∈ [0, 8]2 . The level sets of f are
shown in colors. The trajectory of the robot is shown in red and the
obstacles are shown in blue.

length of bug paths should be very similar. Indeed, this seems to be the
case in view of the simulation results that we have obtained; see Fig. 2.
In the known gradient case, a tight upper bound on the length of bug
paths for e.g., the i-bug algorithm in [8] (which is similar to ours) is
given by L +

∑
O ∈O nO cO , where L is the length of the straight line

joint from the initial position to the maximizer, nO is the number of
unblocked local maxima along O (a local maximum at a point p ∈ ∂O
is called unblocked if the robot can freely move toward the tower
from p), and cO is its perimeter. The feasible direction search in our
algorithm, affected by v andRk and the obstacle, perturbs the bug path
but the resulting behavior is on average similar to the known gradient
case. Then, we conjecture that an upper bound on the expected length
of the path multiplied by a factor upper bounding the time it takes the
robot to find a feasible direction should be a good indicative of the order
of the running time of the algorithm. However, this is just a conjecture,
and a thorough analysis falls out of the scope of this paper. •

VII. SIMULATIONS

Here, we show the response of (7) and Algorithm 1 to a particular
source-seeking problem, in Figs. 1 and 2, respectively. In both simula-
tions, we use a point robot that moves in R2 according to a kinematic
differential drive model. Fig. 1 illustrates the evolution of the mobile
robot to a source f = (p1 − 0.9)2 + |p1 − 0.9| + (p2 − 1)2 + |p2 −
1| with a box constraint p ∈ [0, 1]2 . Notice that the function f is non-
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differentiable and strongly convex, then it satisfies the conditions on
Theorem 2. The tower is located at p∗ = [0.9, 1]�. This simulation uses
α = δ̄1 = δ̄2 = 0.02 and Rk = In for all k ≥ 0, and vk ∈ {−1, 1}2

takes values drawn from the Bernoulli distribution, for which each
outcome has equal probability. We have introduced additional white
noise in both the measurements of the intensity signal and in the state,
with standard deviations of 0.001 and 0.01, respectively. The robot
starts at p0 = [.6, .1]� and it converges to a ball containing the opti-
mizer p∗, which in turn can be made arbitrarily small by decreasing the
parameters α, δ̄1 , and δ̄2 .

Fig. 2 illustrates the evolution of the mobile robot to a source
f = (p1 − 5)2 + |p1 − 5| + (p2 − 5)2 + |p2 − 5| with a box con-
straint p ∈ [0, 8]2 . Notice that the function f is nondifferentiable
and strongly convex, then it satisfies the conditions on Theorem 2.
The tower is located at p∗ = [5, 5]�. This simulation uses α = 0.1,
δ̄1 = δ̄2 = 0.01, and Rk = In for all k ≥ 0, and vk ∈ {−1, 1}2 takes
values drawn from the Bernoulli distribution, for which each outcome
has equal probability. The robot starts at p0 = [0, 0]�. Additive white
noises in both measurements, in the intensity and the state, are intro-
duced. The standard deviations are 0.01 and 0.05, respectively. The
robot converges to a ball containing the optimizer p∗, which in turn can
be made arbitrarily small by decreasing the parameters α, δ̄1 , and δ̄2 .

VIII. CONCLUSION

Building on the SPSA method, we have introduced a novel algorithm
that allows a mobile robot to find the minimizer of an emitting signal.
The novelty of our approach is that we consider nondifferentiable con-
vex functions and fixed step size for compact convex environments. In-
spired by the well-known family of bug algorithms, we have extended
our approach to include obstacles in the environment. In particular, we
prove convergence to a ball around the optimizer of the emitting signal
whose size depends on the step size. The proof relies on the Lyapunov
theory together with tools from convex analysis and stochastic dif-
ference inclusions. Finally, we show the applicability of the proposed
algorithm in a 2-D scenario for the source-seeking problem in scenarios
where observation noise is present. Overall, our proposed modification
captures the mean behavior of the bug algorithms, and its applicability

seems to work in scenarios where the conditions for convergence do
not hold. A thorough analysis of the complexity of the algorithm is left
for future work.
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