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a b s t r a c t

Sensing and computing capabilities of modern traffic intersections have greatly improved in recent
years, but current control policies do not fully utilize these capabilities. In this paper, we present a
novel intersection control algorithm based on an objective function that accounts for drivers’ time
preferences. In particular, the intersection places greater importance on a vehicle which has been
waiting at an intersection over one that just arrived. Coordination between intersections is achieved
through an added term to the objective function using the green wave idea. Under this policy given
a macroscopic dynamical model, we provide a sufficient condition for the controller to maintain
uniformly bounded weighted queues at an intersection given sufficiently small spawn rates. We test
our algorithm and results extensively in a realistic microscopic simulation, through measuring queue
stability and various performance metrics.

© 2020 Published by Elsevier Ltd.

1. Introduction

Motivation. Modern advancement of technology combined with
the rapid decrease in cost of processors has exponentially in-
creased the capabilities of common infrastructure systems over
recent decades. One such system is the traffic intersection man-
ager, which controls the phases of a traffic light, allowing vehicles
in certain lanes to pass safely through the intersection. The es-
timation of the state of traffic near intersections together with
the use of adaptive control algorithms can lead to significant
improvements in traffic conditions and quality of service. Most
modern intersections use loop detectors in the road to approx-
imate the position, velocity, and/or density of vehicles and to
make control decisions. However, loop detectors are expensive
to install and maintain, a significant fraction of loop detectors
are not functioning on a given day (Payne & Thompson, 1997;
Rajagopal & Varaiya, 2007), and they only provide data at dis-
crete points on the road. Improved camera quality as well as
detection and tracking algorithms has opened the door for traffic
intersections to stop relying on loop detectors and start using
cameras, offering a richer and more robust source of information.
Motivated by this scenario, we design a novel intersection control
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policy utilizing the position and velocity information of each
vehicle to enable a more intelligent policy.

Literature review. One common algorithm for intersection control
is SCOOT, or Split Cycle Offset Optimization Technique (Hunt,
Robertson, Bretherton, & Winton, 1981). This controller adjusts
the split, cycle, and offset parameters of the cyclical sequence of
phases to accommodate instantaneous traffic demands as read
by loop detectors. However, there are a few problems with this
formulation which many alternatives also fail to address (Keong,
1993; Lowrie, 1982). One issue is that the parameters which
SCOOT optimizes perturb the cycle in a limited fashion, so SCOOT
is quite constrained and efficiency is lost. Another limitation is
given by the assumption that each vehicle is given equal priority,
which is implicit in the objective. We claim that a better objective
accounts for the time that a vehicle has been waiting so that the
relative importance of a vehicle which has been waiting is more
than a vehicle which has just arrived. Intuitively this idea makes
sense as a mechanism to ensure that every vehicle eventually
crosses the intersection. Studies have also shown that humans
value time inconsistently (Laibson, 1998) and that uncertainty in
travel time is costly (Noland & Small, 1995), both of these issues
are mitigated by this new objective.

Some more recent works have extended these classical al-
gorithms. Backpressure routing techniques are applied to traffic
systems using fixed time slots without considering phase transi-
tion times in Wongpiromsarn, Uthaicharoenpong, Wang, Frazzoli,
and Wang (2012). Linear–quadratic regulator theory is applied
in Diakaki, Papageorgiou, and Aboudolas (2002) with an emphasis
on heavily congested conditions, which does not consider the
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effect of offset of consecutive junctions. A multi-objective linear
programming approach which considers light switchover dates
in a time horizon is described in Dujardin, Vanderpooten, and
Boillot (2015). A genetic algorithm is applied to maximize traffic
flow using a graphics processing unit in Shen, Wang, and Zhu
(2011). Work has also been done on bandwidth maximization
using variable speed limits (De Nunzio, Gomes, de Wit, Horowitz,
& Moulin, 2016) and partitioning techniques (Tian & Urbanik,
2007). However, none of these works fully utilize modern sensing
technology in a flexible optimization setting, which can be used
to e.g. prioritize those who have been waiting longer times.

Statement of contributions. In this paper, we devise a traffic inter-
section policy to minimize an objective function that accounts for
time-inconsistent waiting-time preferences. These preferences
have similar properties to hyperbolic discount functions, provid-
ing a simple model for human rewards, and seem to be effective
to control traffic at intersections. In particular, the objective
considers incoming vehicles from neighboring intersections, and
places additional weight on a vehicle which has been waiting
some time, this is representative of human preferences. We con-
sider a class of policies that can be effective for controlling traffic
at intersections and keep traffic bounded at intersections. We
provide a sufficient condition on the intersection switching rule
using a macroscopic flow model that ensures uniform bounded
weighted queue lengths under a sufficiently small vehicle spawn
rate. We also add a term to the objective function to enable
cooperation between intersections with the goal of increasing
overall efficiency. In simulation, we model vehicle agents after
real drivers: a driver attempts to drive its route at the speed limit
while following traffic laws and maintaining adequate distance
between it and other vehicles. We simulate our intersection
controller policy with the more complex vehicle agents on a
system with two intersections and show the benefits of the new
control algorithm. In particular, we verify the bounded weighted
queue result for the complex model, and we show how the
policy effectively minimizes the total squared waiting time or
human impatience at the intersection. Simulation results verify
how our policy is more effective in bounding weighted queues
than a two alternatives and show the effect of the coordination
term on various performance indices. This work is an extension
of Gravelle and Martínez (2017), containing the full proof of
the queue stability theorem, an extended remark, and additional
simulation figures and discussion.

Organization. This paper is organized as follows. Section 2 con-
tains the problem formulation with motivation and the vehicle
behavior model. Section 3 contains the queue stability theorem
and proof under a simplified macroscopic model. Section 4 con-
tains simulation details and numerical and plotted results. Finally,
Section 5 contains a summary of our work and a discussion of
future work.

2. Problem formulation

In this section, we formulate the intersection control problem
by defining the objective function and control variables. The goal
of the intersection policy is to minimize this objective function
which characterizes travel time of all vehicles while ensuring that
vehicles rarely have to wait long times at a given intersection (see
Table 1).

Single intersection problem

An intersection I is a junction of road segments of given
length LI > 0. These roads can have any number of lanes
and feasible allocation of turn lanes. We denote by N the total

Table 1
Table of symbols.
I Intersection

LI Intersection road length [m]
N Total number of vehicles
H Time horizon [s]
∆h Discrete time step [s]
U Set of intersection phases
u Phase given by a pair of conflict free lanes
i Vehicle identity
t̂i Extra wait time (delay) at I for vehicle i [s]
w Wait-time function to weight extra wait times
ℓ Lane
η Intersection switch threshold
g I
u Minimum phase time [s]

nI
u Minimum number of vehicles through I

Q I
u Number of waiting vehicles

tgap Vehicle safety buffer [s]
LIu Maximum path length through intersection
p Platoon
ξ I
p Time for platoon to cross intersection [s]
z Ip Time quantifying platoon state at I [s]
E I

ℓ Number of vehicles approaching I
T I
p Time of arrival of platoon at I [s]

number of vehicles that flow into the intersection system over
a time horizon, [0,H], which is discretized as h ≡ k∆h, for
k ∈ N0 where N0 is the set of natural numbers including zero
and ∆h > 0 is a small discretization step. In what follows,
we denote by U the set of phases u by which a conflict-free
set of lanes is selected at a given time. For example, one pos-
sible phase would allow all vehicles traveling straight through
the intersection northbound or southbound to pass through the
intersection safely, while all other vehicles would be prohibited.
For ease of notation and without loss of generality, we con-
sider U ≜ {NlSl,NlNs,NsSl, SlSs,WlEl,WlWs,WsEl, ElEs}, where the
base variable represents whether the road originates from north,
south, east, or west, and the subscript denotes left-turn lanes (l)
or straight/right lanes (s).

Let i ∈ {1, . . . ,N} denote a vehicle passing through the
intersection within the time horizon H . As a first approximation
to the intersection problem, consider the cost function:

f (t̂i) =
N∑
i=1

(
∆ti + w(t̂i)

)
.

The variable ∆ti (with ∆ti ≈ ki∆h, for some ki) is the time
that vehicle i would spend at the junction if it were to move
through the system without stopping, t̂i (with t̂i ≈ k̂i∆h, for some
k̂i) is extra time spent by vehicle i due to the delay in I , and
w : [0,+∞)→ [0,+∞) is a class K∞ weighting function which
penalizes long delays.1 The previous cost can be understood as
a function of a sequence of phases (u1, . . . , uM ) ∈ UM , for some
integer M such that M∆h ≤ H . The extra time t̂i is incremented
when vi ≤ γ vf , where vi is the speed of vehicle i, γ ∈ [0, 1) is
the wait threshold which defines when a vehicle is waiting, and
vf is the speed limit.

We assume that the intersection can track vehicles which are
in lanes moving towards it within some distance L, so it knows
time-of-sighting (measured in its time clock tsys), position, and
velocity of each vehicle. Predicting ∆ti for all vehicles is difficult
because the dynamics of each vehicle must be calculated forward
in time until they leave the system, and this is intractable due

1 Recall that a continuous function f : [0,∞)→ [0,∞) is said to belong to
class K∞ if it is strictly increasing, f (0) = 0, and limr→∞ f (r) = ∞.
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to requiring full forward simulation to solve. Thus, we simplify
the original cost function above by proposing a simpler objective
in that does not require explicit travel time estimates. More
precisely, we consider only the current time step, and focus on
the current cost over u ∈ U weighting the delays of each lane to
determine which directions to allow through. In other words, at
each instance of time h, we consider:

J1(u) ≜
∑
ℓ∈u

wℓ(t̂i) ≜
∑
ℓ∈u

∑
i∈ℓ

w(t̂i). (1)

Note that there is an implicit dependence of J on u0, the previ-
ously implemented phase, and that wℓ is the sum of weights of
vehicles in lane ℓ which are allowed through in phase u. This
problem is solved at every discrete time instance h ≥ 0, to
determine a phase switch u. However, a phase switch from u = u0
to u = u1 can only be implemented when the set of feasible
u ̸= u0 is non-empty at time h, or, in other words, for those u
for which the following hold.

First, a substantial difference in lane weights is required to
switch to a new phase due to delays associated with chang-
ing phases including yellow lights and vehicle acceleration time.
Given a previous u0, the set of feasible u ∈ U at time h are those
for which∑
ℓ∈u

wℓ(t̂i) > η
∑
ℓ∈u0

wℓ(t̂i), (2)

holds, for some η > 1, where η is a tuning parameter called the
switch threshold. In other words, this is a constraint to the cost
function in (1). Intuitively, this constraint allows a phase to switch
at time h only if the delays of waiting vehicles are significantly
larger than the current phase.

In addition, we require a lower bound on the time spent in
a specific phase u0 to consider the time it takes for vehicles to
accelerate from rest. We define this bound based on allowing a
certain number of vehicles through the intersection from rest.
We define nI

ℓ as the minimum number of desired vehicles to let
through at each lane ℓ at intersection I . Then, nI

u = maxℓ∈u nI
ℓ is

the minimum number of desired vehicles to allow through during
phase u, based on which lanes will be allowed through by u. We
define a queue length Q I

ℓ at a lane ℓ entering into an intersection
I as the number of vehicles waiting in ℓ to cross the intersection.
With knowledge of the queue lengths at each lane Q I

ℓ , define
Q I
u = maxℓ∈u Q I

ℓ . If h0 was the time at which u0 began, and h−h0
is the time spent in u0, we consider the following constraint on
u. That is, in order for u to be feasible at time h, it should satisfy

h− h0 ≥ g I
u ≜ (min{Q I

u, n
I
u} − 1)tgap +

√
2LIu
a

, (3)

where tgap is the time between vehicles moving safely at max-
imum velocity, LIu is the maximum length of the path through
the intersection during phase u, and a is the average acceleration
of vehicles. Note that g I

u ≥ 0. Intuitively, this constraint uses
the time needed by a desired number of vehicles nI

u to make it
through the intersection safely. In all, a nonlinear optimization
problem is given by the minimization of J1(u), over the decision
variable u ∈ U , subject to the constraints (2) and (3) at time h.
This problem is to be solved at every h to decide whether a phase
change is implemented at h.

Multiple intersection problem

Given a system of multiple intersections, a naive extension
to the previous setting would partition the roads between the
intersections and assign each part to the nearest intersection,
serving to decouple the intersections and localize their control.
To avoid a complete decoupling, which could have detrimental

effects on joint performance, we extend the one-intersection
problem formulation by adding a term that can enable inter-
section cooperation using the idea of green wave (De Nunzio
et al., 2016). A green wave results from the coordinated offset of
green traffic lights along a road, which allows a group of adjacent
vehicles to this road to pass through the intersections without
stopping. We refer to a group of vehicles that can pass through
multiple intersections as a platoon. By using limited communi-
cations between other intersections and vehicles, an intersection
first identifies a group of vehicles or platoon that can benefit
from synchronization, then it coordinates phase switching with
other intersections. Current methods which attempt to maximize
platoon sizes usually require a fixed cycle length. To incorporate
this idea in a more flexible non-cyclic framework, we introduce
a coupling term.

The problem now is extended to

minimize
u∈U

J2(u) ≜
∑
ℓ∈u

(
wℓ(t̂i)+ Bℓ

)
,

subject to u ∈ P,

(4)

where Bℓ is a term that exploits the knowledge of future vehicles
either from intersections or just from additional sensors to plan
ahead, and P is the set of phases which satisfies the constraints
in Eqs. (2) and (3). We describe the term Bℓ more precisely
after Eq. (5). We assume that intersections have synchronized
clocks, and that an intersection I will receive some information
about when vehicles will be arriving in the future either from the
vehicles themselves or from another intersection. For intersection
I , these information packets take the form {ℓIp, E

I
p, T

I
p}, where

p denotes a platoon and ℓIp, E
I
p, T

I
p are the lane, the number of

vehicles coming, and expected time of arrival of the platoon
p, respectively. Knowledge of the transition time between each
phase is required, which is simply the time a light must stay in
yellow before transitioning to red, we denote this as Y I

p . We define
ξ I
p as the amount of time required for all vehicles in platoon p to
cross the intersection I , and we let z Ip = tsys+Y I

p+S−T I
p represent

a time difference, where tsys is the current time measured by the
clocks at each intersection (which is common to all of them),
and S is the average vehicle’s time to stop from full speed. Thus,
tsys + Y I

p + S marks the time instant at which vehicles stopped
at I after the traffic light for lane ℓp was set to red, and z Ip
measures the time difference between vehicles stopping and the
new platoon of vehicles arriving at the intersection. In this way,
z Ip = 0 means that a platoon p just arrives at a time T I

p that is
equal to the time tsys + Y I

p + S at which the light turns green. If
z Ip < 0 this means that the platoon arrives just before the green
light, while z Ip > 0 means the platoon arrives just after the green
light.

With knowledge of this data, a benefit is achieved if the light
is still green when the first vehicle arrives, and stays green for
the whole platoon to make it through the intersection. With this,
define

Bℓ = αEℓ max

{
0,min

{
z Ip
ξ I
p
+ 1,min

{
1,

g I
u

ξ I
p

}
,
g I
u − z Ip
ξ I
p

}}
, (5)

where ℓ = ℓp, α is a control parameter determining how heavily
to consider the platoons, see Fig. 1. Inside the minimum, recall
that g I

u is defined as the right-hand side of constraint (3). In

addition,
zIp
ξ Ip
+ 1 ≤ 1 is the fraction of the platoon which can go

through the intersection when the platoon arrives early (before
switching to red), min{1, g Iu

ξ Ip
} characterizes the efficiency of the

platoon crossing during the green, and
g Iu−z

I
p

ξ Ip
is the fraction of
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Fig. 1. Shape of Bℓ , which is maximized when the platoon overlaps completely
with a green light and is zero when there is no overlap.

the platoon which can benefit from a switch to green when the
platoon arrives late. Intuitively, Bℓ is minimized (at a value of 0)
and therefore provides the most benefit when the green phase
coincides with the arrival of vehicles (that is, the inside minimum
is attained at

zIp
ξ Ip
+ 1 = 0 or at g I

u = z Ip), and is maximized (at a
value of 1) and provides no benefit when the green phase has no
overlap with vehicle arrival. In any case, the benefit of switching
the light at green when the platoon arrives is limited by how
much the phase is active, which is determined by the parameter
g I
u. See Fig. 1 for an illustration.

Vehicle behavior model

In our subsequent simulations, we modeled vehicle agents’
behavior after real drivers, according to the following rules:

(i) A vehicle has a fixed path through the system, from origin
at a boundary to destination at a boundary.

(ii) Lane changes are not allowed.
(iii) A vehicle accelerates uniformly up to the speed limit un-

less:

• there is risk of collision with another vehicle, with an
added safety buffer,
• there is a red or yellow light and the vehicle can safely

stop in front of an intersection,

in which the vehicle decelerates uniformly.

Wait-time function

The (weighted) wait-time function w models the wait-time
of drivers at the intersection. The function we consider here
is a type of hyperbolic, time-inconsistent discount function in
reward maximization problems (Laibson, 1998). Unlike exponen-
tial discounting, these functions reflect the human preference
to choose smaller-but-sooner rewards over larger-but-later re-
wards as the delay occurs sooner rather than later in time. These
human-preference functions were validated in the Psychology
and Experimental Psychology fields (Green, Fry, & Myerson, 1994;
Kirby, 1997; Sheffer et al., 2016), and have since then been a

Algorithm 1: Intersection Control Algorithm for Intersection I
1 Initialize queue lengths Q ← 0, phase u, min green time per
phase gu, yellow time y, current phase u, switch threshold s,
switch time hs ←∞

2 Define U as set of phases and Nu as set of phases which share a
direction with u

3 for each time h do
4 if h− hs > gu then
5 Calculate weights in each lane wℓ

6 Calculate weights in each phase wu
7 if maxu∈U wu − wu > ηwu then
8 u← argmaxu∈U wu
9 Z ← 1

10 ts ← t
11 else if maxũ∈Nu wũ − wu > 0.5ηwu then
12 u← argmaxũ∈Nu wũ
13 Z ← 1
14 ts ← t
15 end
16 if Z = 1 then
17 Send packet of data D containing source intersection

I , Qℓ for all lanes ℓ leading to neighboring intersection
J , and expected time of arrival T

18 Z = 0
19 end
20 end
21 h← h+∆h
22 end

basic premise in Behavioral Economics (Frederick, Loewestein,
& O’Donoghue, 2002; Laibson, 1997, 1998). Subsequently, such
models have also been considered in Management and Queuing
Theory (Hassin, 2016; Plambeck & Wang, 2013). Hyperbolic dis-
count functions in reward maximization problems take the form
f (t̂) = 1

α+φ t̂
, where α and φ are some parametric coefficients, and

t̂ is the delay. In our cost-minimization setting, this translates into
wait functions of the form w(t̂) = α+φ t̂ . With a similar property
to these, we consider functions of the form

w(t) = φt2 + αt + β, (6)

and, for simplicity in the computations and simulations that
follow, w(t) = φt2 for some constant φ > 0. These functions
preserve the hyperbolic discounting property, while performing
better than purely hyperbolic functions in maintaining bounded
weighted queues in traffic simulations. Additionally, the functions
ensure that no vehicle is stuck indefinitely, and should help
reduce the average travel time variance compared to a linear
model.

3. Queue stability

In this section, we prove weighted queue length stability un-
der a simplified model. Weighted queue length for road r (con-
sisting of a set of lanes) is denoted as wr ≜

∑
i∈r w(t̂i), and recall

that the queue length, Qr is the number of cars waiting at r to
cross the intersection. System stability is achieved when all lane
queue lengths remain bounded below some value such that each
queue does not spillover into other intersections.

The following assumptions were made to construct the new
model:

Assumption 3.1 (Traffic Model). Traffic flow follows a continuous-
time macroscopic model where change in vehicle density on
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some part of the road is proportional to the net flow rate, or
ρ(t + ∆t) = ρ(t) + ∆t(qin − qout). The traffic density of a lane
into an intersection is proportional to its queue length. There is
a constant flow rate qin,r = qin into each non-outbound road
r ∈ {1, . . . , 4} from the boundary. Given a queue of vehicles with
the freedom to move, the flow rate at the front of the queue is a
constant qout > qin.

Assumption 3.2 (Two-phase Intersections). There are two intersec-
tion phases, each allowing bi-directional flow on the two roads,
one running north–south and the other east–west. Each phase has
minimum duration of gNS, gEW, respectively. Flow begins imme-
diately when a new phase begins.

Assumption 3.3 (Linear Wait-time). The average time that a ve-
hicle has been waiting at an intersection is proportional to the
number of vehicles in the queue, nr (t), at time t . This implies
wr (t) ∝ n2

r (t) for road r .

We formed a simpler dynamical model and applied the fol-
lowing Intersection Control algorithm to solve the optimization
problem given by Eqs. (1)–(3) and described in detail in Algorithm
1.

At each instant of time h, one has to check whether there
is a feasible phase change satisfying (1)–(3). If so, an evaluation
of the cost function J1 over all possible feasible phase changes
is performed and then the best phase is chosen. Given that the
number of phase changes is small and finite, this approach is
practical, and complexity does not increase with network size.
The following theorem contains the stability result associated
with this Intersection Control approach:

Theorem 3.4. Given Assumption 3.1 (Traffic model) with constant
flow-rate parameters qin,r , ∀r ∈ {1, . . . , 4} and qout, Assumption 3.2
(Two-phase intersections), Assumption 3.3 (Linear wait-time), and
sufficiently small spawn rate qin,r = qin, ∀r ∈ {1, . . . , 4}, any finite
switch threshold η > 1 will ensure that the Intersection Control
approach to optimize the cost (1) under constraints (2) and (3) at
each time maintains uniformly bounded weighted queues in all lanes
for all times.

Interpreting this result leads to the following intuitive expla-
nation: η is directly related to T , the time elapsed between two
consecutive phase switches, and as long as η is small enough
so that the growing weighted queues remain bounded and large
enough so that the minimum green time does not affect the
dynamics, the system is stable.

Proof. Road indices 1, 2, 3, 4 indicate north, east, south, west,
respectively, relative to the center of the intersection. For now
assume initial conditions such that the north-south road has a
green light u(0) = [1, 3], nr is the number of vehicles on road r ,
wNS(0) = ηwEW(0), and when a switch occurs at time T , T ≥ gNS.
Given any initial phase u(0), a cycle with duration tcycle > 0 occurs
when u(tcycle) = u(0) with u(t) ̸= u(0) for some t ∈ (0, T ).
Queue lengths will remain bounded if, nr (t + tcycle) ≤ nr (t), ∀r ∈
{1, . . . , 4}. Define wEW(t) = w1(t) + w3(t) and wNS(t) = w2(t) +
w4(t). Then due to Assumption 3.3 (Linear wait-time),

wEW(t) =
n2(t)2

2qin,2
+

n4(t)2

2qin,4

=
(n2(0)+ qin,2t)2

2qin,2
+

(n4(0)+ qin,4t)2

2qin,4
,

where

nr (0) =
√
2qin,rwr (0), ∀ r ∈ {1, . . . , 4}.

Simplifying,

wEW(t) = w2(0)+ w4(0)+(√
2qin,2w2(0)+

√
2qin,4w4(0)

)
t +

qin,2 + qin,4

2
t2.

Now define ∆qr = qin,r − qout,r, ∀ r ∈ {1, . . . , 4}. Computing
wNS(t),

wNS(t) =
n1(t)2

2qin,1
+

n3(t)2

2qin,3

=
(n1(0)+∆q1t)2

2qin,1
+

(n3(0)+∆q3t)2

2qin,3
.

Simplifying,

wNS(t) = w1(0)+ w3(0)+(
∆q1

√
2w1(0)
qin,1

+∆q3

√
2w3(0)
qin,3

)
t +(

∆q21
2qin,1

+
∆q23
2qin,3

)
t2.

One condition guaranteeing the previous definition of bounded
weighted queues is wEW(T̃ ) = wEW(0) and wNS(T̃ ) ≤ wNS(0) at
some time T̃ . Due to the symmetry of the two phases and the
immediate flow condition after a switch of Assumption 3.2, an
equivalent condition is wEW(T ) = wNS(0) and wNS(T ) ≤ wEW(0)
for some time T . Assume the phase changes when wEW(T ) =
ηwNS(T ), so after applying these equations, we get

0 = w2(0)+ w4(0)− ηwNS(T )+(√
2qin,2w2(0)+

√
2qin,4w4(0)

)
T +

qin,2 + qin,4

2
T 2, (7)

0 ≥ w1(0)+ w3(0)− wEW(0)+(
∆q1

√
2w1(0)
qin,1

+∆q3

√
2w3(0)
qin,3

)
T +

(
∆q21
2qin,1

+
∆q23
2qin,3

)
T 2.

(8)

Plugging in initial conditions to Eq. (7) gives

0 = (1− η2)(w2(0)+ w4(0))+(√
2qin,2w2(0)+

√
2qin,4w4(0)

)
T +(

qin,2 + qin,4

2

)
T 2.

Define

A1 =

(
qin,2 + qin,4

2

)
,

B1 =

(√
2qin,2w2(0)+

√
2qin,4w4(0)

)
,

C1 = (1− η2)(w2(0)+ w4(0)),

then

T =
−B1 +

√
B2
1 − 4A1C1

2A1
, (9)

and because η > 1, A1 > 0, B1 > 0, and C1 < 0, a real positive
solution exists for T . This quantity represents how much time
passes before wEW(T ) = wNS(0).
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Eq. (8) is satisfied when

T ≤
−B2 −

√
B2
2 − 4A2C2

2A2
,

A2 =

(
∆q21
2qin,1

+
∆q23
2qin,3

)
,

B2 =

(
∆q1

√
2w1(0)
qin,1

+∆q3

√
2w3(0)
qin,3

)
,

C2 = (η − 1)(w2(0)+ w4(0)).

(10)

Due to the fact that ∆qr < 0, ∀r ∈ {1, . . . , 4} from Assump-
tion 3.1 (Traffic model), A2 > 0, B2 < 0, and C2 > 0, the solution
to Eq. (10) is real and positive when

B2
2 − 4A2C2 ≥ 0,

B2 +

√
B2
2 − 4A2C2 < 0,

both of which are satisfied when qin,r is small enough, for all r ∈
{1, . . . , 4}. By a continuity argument, by taking an η sufficiently
close to 1, the solution to Eq. (9) (which can be made arbitrarily
close to 0 by taking an η sufficiently close to one) will also satisfy
the bound in (10).

This argument can be repeated for each future switch by
simply replacing instances of wEW with wNS and vice versa, due
to qin,r = qin, ∀r ∈ {1, . . . , 4}. Now relaxing the assumption on
initial conditions, in finite time one of two scenarios can occur.
One is, the light will switch due to the weights so either wNS(T ) =
ηwEW(T ) or wEW(T ) = ηwNS(T ), this is treated as the new initial
condition and the argument holds. The second scenario is that
the light will switch at gNS due to the green time constraint, and
wEW(gNS) = wEW(T ) + δ. However, from here either a switch
will occur due to the weights or a switch will occur due to the
constraint from Eq. (3), either case will results in queues bounded
by wEW(T )+ δ, and this argument can be propagated forward in
time as well. □

Remark 3.5 (On Theorem 3.4 Assumptions). If Assumption 3.1
(Traffic model) is relaxed and qin,r (t) ∈ [qmin, qmax], ∀ r ∈
{1, . . . , 4},∀ t , then the solution to Eq. (9) is bounded (due to
convexity) by the solutions to (9) with qin,r = qmin and qin,r =

qmax, ∀ r ∈ {1, . . . , 4}. Similarly, if qout must ramp up to the
maximum value from 0, a similar argument can be made, leading
to similar results and overall stability but with tighter bounds on
η.

If we relax Assumption 3.2 (Two-phase intersections), the
same ideas and mathematical principles can be applied to the
more complex case where there are four possible phases (left–
left, left–straight, left–straight, straight–straight) instead of one
(straight–straight) in each direction. In the multiple intersection
case, each individual intersection can be viewed as discussed
previously, but now with a perturbation in the form of the coop-
eration term Bℓ. This perturbation is bounded as seen in Eq. (5),
and in the worst case where many lanes have long queues, the
perturbation will be small compared to the quadratic wait-time
costs, so we expect bounded weighted queues in these scenarios
as well.

Regarding Assumption 3.3 (Linear wait-time), we note that it
imposes an implicit assumption on the behavior of our Intersec-
tion Control Policy. However, we believe that it is possible to relax
this assumption to a class K∞ polynomial relationship between
the wait-time function w(t) and number of cars on a road nr (t).
We provide an informal argument for this fact in the following.
Similarly to the theorem proof, Eqs. (7) and (8) would be replaced
by polynomial equations in T of a power k. In an analogous way
to (7), we would have a polynomial with independent term given

Fig. 2. Image of microscopic model.

by (1−η)α, for some α > 0, and a positive leading coefficient for
T k proportional to the kth power of qin,2, qin,4. By a Descartes’ rule
of signs on the coefficients of a polynomial, given that η > 1, we
can ensure that there is at least a positive root of the polynomial.
This root can be made as small as possible by taking η as close
to one as possible. A more careful examination of the coefficients
of an inequality similar to (8), with the condition ∆qi < 0, for
i = 1, 2, and the application of Descartes’ rule should ensure the
existence of another positive root for a choice of a sufficiently
small η.

4. Simulation results

The agent-based vehicle dynamics model is used in simula-
tions along our Intersection Control policy described in Algorithm
1. However, we employ it to solve problem (4), which extends
the formulation of problem (1)–(3). An intersection knows which
lanes are associated to which phases, and has parameters fixed. At
each time step, the weights are calculated in each lane, and these
weights are associated to different phases. If there exists another
phase with η times the weight of the current phase, a transition
occurs to this phase. If there exists another phase which shares
a direction with the current phase and has η/2 times the weight
of the current phase, a partial transition occurs to this phase.

Simulations were run on single intersections and systems of
two intersections, see Fig. 2. We define the discrete time step
∆h = 0.1. The safety gap is tgap = 1 s, so a vehicle maintains
a gap with the vehicle in front such that they would not collide
even with a one second delay in reaction to the vehicle ahead.
The speed limit is vf = 20 kph, yellow time is y = 5 s for each
phase. The minimum time in green was initially 10 s, however
during simulation we found this to be inefficient, so an adaptive
minimum green time was used, where g I

p = min{10, 3.5 +
1.5maxℓ∈L Q I

ℓ}, where L is the set of lanes which are allowed
through intersection I in phase p, Q I

ℓ is the length of the queue
in lane ℓ, and the coefficients were chosen to give enough time
for each vehicle to pass through. Travel time across intersections
Tp = 17.5 s. The scaling factor in Eq. (6) is φ = .05, the switch
threshold is η = 2, and the wait threshold is γ = 0.1 as defined in
Section 2. Vehicles spawn at each time step according to a Poisson
distribution with parameter λ, and vehicles are distributed into
available spawn points with uniform probability unless stated
otherwise. The spawn rate was chosen by selecting the highest
value in which queues remained bounded for all time, this value
was around λ ≈ 0.8 veh/sec, see Fig. 3.

In the single intersection case, our intersection algorithm sig-
nificantly outperforms a simple intersection with constant phase
cycles, where an entire cycle takes 1 min. We use three perfor-
mance metrics to compare algorithms, the total travel time of all
vehicles tt , the total wait time of all vehicles twt , and the total
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Fig. 3. Max queue length is plotted over time.

weighted wait time of all vehicles twwt . It can be seen in Figs. 4
and 5 that the wait time is kept lower using our algorithm.

In the two intersection case, we compared our algorithm with
both the constant cyclic policy and with TAPIOCA (Faye, Chaudet,
& Demeure, 2012). TAPIOCA is an algorithm optimizing a cost
which tries to balance short-term delay reductions with coordi-
nation to reduce long-term delays. It considers linear functions
of vehicle density to do so, and makes a few simplifying as-
sumptions about the intersections. TAPIOCA was run with default
cost function weights. Compared with the cyclic policy, TAPIOCA
performed worse for each metric, and scaled worse with vehicle
spawn rate. This could likely have be improved using adaptive
weights, but this was not implemented in the paper. In our
opinion, without adaptive weights, the cost functions of Faye
et al. (2012) does not consider existing large queues with high
enough priority. Our policy outperforms the other two policies
in all categories, with significant improvements in twwt in con-
gested conditions. We chose coordination coefficient α = 1. We
also tested varying the spawn distribution or vehicles, essentially
creating a main road crossing two minor roads. By doubling the
allocation of vehicle spawns to the main road, total travel time in-
creases by 5%, total wait time decreases by 5%, and total weighted
wait time decreases by 7%. Overall, the algorithm performs well
under both scenarios. Results of the simulations are found in
Table 2, units are thousands of seconds.

We also compared each performance given different values of
α using Algorithm 1, where α is the coefficient on the cooperation
term Bℓ, see Fig. 6. This simulation used a non-uniform Poisson
spawn, where vehicles are twice as likely to spawn on the road
which passes through both intersections. These simulations were
run for two minutes each. We can see a trade-off where increas-
ing α reduces tt but increases twt and twwt , which is expected
because Bℓ is perturbing an algorithm which is minimizing twwt
to allow more vehicles through immediately. In Fig. 7, five minute
simulations were run to better characterize performance as a
function of α when α is small.

5. Conclusion and future work

In summary, we presented a novel intersection control algo-
rithm based on an objective function which attempts to accu-
rately characterize driver preferences. A realistic vehicle model
is constructed and a simplified version is used to guarantee

Fig. 4. The evolution of the weight of each phase under the algorithm, where
each color represents a different phase.

Fig. 5. The evolution of the weight of each phase under a cyclical policy, where
each color represents a different phase.

Table 2
Performance of the custom algorithm vs cyclical algorithm on one intersection
over 5 min, in thousands of seconds.
Policy λ tt twt twwt

Cycle 0.60 7.34 3.34 5.03
0.80 10.7 4.80 7.50
1.00 15.4 7.76 14.9

TAPIOCA 0.60 8.03 3.75 7.71
0.80 12.1 6.41 1.83
1.00 18.7 11.6 39.3

Custom 0.60 7.18 2.81 3.37
0.80 10.1 3.94 4.71
1.00 13.7 5.83 8.17

bounded weighted queues given small spawn rates. The algo-
rithm is tested thoroughly in simulation and compared with other
methods.

We are considering several possible extensions to this work.
One potential problem with this formulation is that vehicles must
be delayed before they are considered important, perhaps a more
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Fig. 6. Two minute two intersection simulation with performance plotted as a
function of α.

Fig. 7. Five minute simulation of two intersections with performance plotted
as a function of α. The thin lines represent the performance under the default
cyclic policy under the same conditions. Notice the large decrease in twwt but
small increase in tt by using our algorithm.

sophisticated model not based on a threshold value will perform
better. We plan to compare performance to more established
algorithms such as SCOOT or SCATS. We are interested in address-
ing the spillover problem, when the queue from one intersection
spills into another, we believe the current formulation would
allow this to be addressed through an additional term in the ob-
jective function. We are also considering a learning-based method
for tuning parameters such as wait threshold γ , switch threshold
η, time spent in each phase g I

u, and coordination coefficient α.
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