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A novel multi-vehicle motion planning and collision avoidance algorithm is proposed and analyzed
in this paper. The algorithm aims to reduce the amount of onboard calculations and inter-agent
communications needed for each vehicle to successfully navigate through an environment with static
obstacles and reach their goals. To this end, each agent first calculates a path to the goal by means of
an asymptotically optimal rapidly-exploring random tree (RRT*) with respect to the static obstacles.
Then, other agents are treated as dynamic obstacles and potential collisions are determined by
means of collision cones. Collision cones depend on the position and velocity from other agents and
are grown conservatively between inter-agent communications. Based on the available information,
each agent determines if a deconfliction maneuver is needed, if it can continue along its current
path, or if communication is needed to make a decision about a conflict. With probability one, our
algorithm guarantees that the agents keep from colliding with each other. Under an assumption on
the existence of a solution for a vehicle to its goal, this algorithm also solves the planning problem with
probability one. Simulations illustrate a group of agents successfully reaching their goal configurations
and examine how the uncertainty affects the communication frequency of the multi-agent system.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Much work has been devoted to the design and analysis of
lanning and collision avoidance algorithms for multiple robots in
ynamic environments, (Bishop, 2000; Frazzoli, Dahleh, & Feron,
002; Van Den Berg, Guy, Lin, & Manocha, 2011). With the advent
f autonomous vehicles and self-driving cars, this problem has
cquired new relevance since these algorithms can ensure the
afe co-existence of vehicles and humans, in shared domains. In
imple terms, N agents must traverse the environment from their
nitial configurations to their goal configurations without collid-
ng with static obstacles or the other agents. Individual paths may
e at odds with other agents. To remedy this, collision avoidance
aneuvers are performed which require globally and contin-
ously available information. Motivated by recent advances in
vent-based planning, we present in this paper an algorithm that,
y exploiting sampling-based motion planners, can guarantee
ollision avoidance with reduced communications and address
he planning objective in obstacle environments.

Literature Review. In static environments, sampling-based
lanners include Rapidly-exploring Dense Tree algorithms (RDTs,
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also known as RRTs) (LaValle, 2006) and Sampling-Based
Roadmaps (SBRs, including Probabilistic Roadmaps (PRMs)
(Kavraki, Svestka, Latombe, & Overmars, 1996)). These plan-
ners are probabilistically complete and return a feasible solution
quickly. For a slight increase in runtime, the RRT* planner (Kara-
man & Frazzoli, 2011) returns a path that is asymptotically
optimal. The RRT# (Arslan & Tsiotras, 2013) and Fast Marching
Tree (FMT*) (Janson, Schmerling, Clark, & Pavone, 2015) are two
other sampling-based planners that return an asymptotically op-
timal path. Our previous paper, Boardman, Harden, and Martínez
(2014), introduces the Goal Tree (GT) algorithm for replanning in
environments with unexpected static obstacles and maintains an
RRT* that is trimmed and extended based on the new obstacle
information.

The following selection of works deal with multiple agents
in a workspace. A first set of papers solve the multi-agent path
planning problem without building a roadmap or considering un-
certainty: The algorithm in Biswas, Anavatti, and Garratt (2016)
is based on vectorized particle swarm optimization. A real-time
algorithm is presented in Chen, Cutler, and How (2015) that
uses sequential convex programming. A dynamic programming
scheme is used in Luo, Chakraborty, and Sycara (2016) to de-
velop an online coordinated motion planner. While the algo-
rithms in Murano, Perelli, and Rubin (2015) and Sharon, Stern,
Goldenberg, and Felner (2013) use roadmaps, they do not use
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ampling-based motion planners. The RRT* is used in the Multi-
gent Poli-RRT* in Ragaglia, Prandini, and Bascetta (2016), which
ses a hierarchy method to find collision free paths.
Most similar to this paper are Kothari and Postlethwaite

2013), Neto, Macharet, Chaimowicz, and Campos (2013) and
irani and Zhu (2016), which use RRT based planners with uncer-
ainty. More precisely, a motion planning problem with uncertain
bstacles is solved using a game theoretic formulation in Virani
nd Zhu (2016). Here, agents are non-cooperative, and they
eed to estimate others’ dynamics using sensor data. This re-
ults in a computationally-involved differential-game formulation
hose solution is based on RRT*. Sequential path finding is
sed in Neto et al. (2013) to develop a real-time algorithm that
andles uncertainties and disturbances. The main emphasis of
his work is on how to recompute and adapt the non-optimal
RT trees efficiently. Simulations are employed to verify the
esults. The real-time algorithm for uncertain dynamic obstacles
n Kothari and Postlethwaite (2013) uses chance constraints. In
articular, Kothari and Postlethwaite (2013) makes use of the
hance-constraint framework to guarantee collision avoidance
ith dynamic obstacles with large probability. As is usual in
he literature, Kothari and Postlethwaite (2013) requires agents
ontinuously monitor the other agents.
This paper pertains to multiple agents in the same environ-

ent moving to their individual goal configurations. Each of the
agents builds an RRT* that is used to determine the best path to

ts goal from all other configurations. While executing the current
est path, the agent checks for conflict with the other agents
n the environment. When a conflict is determined, the agent
erforms a deconfliction maneuver using collision cones based on
he Distributed Reactive Collision Avoidance (DRCA) from Lalish
2009). The deconfliction maneuver updates the agent’s velocity
o that it is not in conflict with any of the other agents. This new
elocity will lead the agent to a nearby node in the graph. The
gent then updates its current best path and continues to travel
long repeating the above process. The algorithm is first given
or perfectly known position and velocity of the other agents.
he algorithm is then extended to handle uncertainty in the
nowledge of other agents’ positions and velocities.
A main advantage to our algorithms are the agents’ avoidance

f static obstacles in a preprocessing step, thanks to the use of an
ptimal roadmap or RRT*. The avoidance of static obstacles rarely
equires additional computation while the agents are moving. A
econd main distinction with the previous literature is given by
he sporadic communication algorithm, which requires commu-
ications among agents only when necessary, and (a) guarantees
econfliction, and (b) does not require detailed dynamic models
f other agents or learning them, as they are fully cooperative.
ther minor benefits are that conflicts are simple to calculate
nd, when needed, the algorithm prioritizes agents automatically
voiding deadlocks.
We analyze the algorithm to prove that the agents will never

ollide with one another or static obstacles. A proof is given
or both the certain and uncertain algorithm. We also prove
hat, under an assumption about the existence of a collision
ree path to the goal, the agents will eventually reach their goal
onfigurations. The simulations show that no collisions occur.
he simulations also examine the amount of uncertainty seen by
he agents. Two additional simulations show five agents reach-
ng their goal configurations successfully in a more complex
nvironment.
This paper is organized as follows. First, the problem is for-

ulated with background information on the RRT* and collision
ones given in Section 2. Next, Section 3 details our algorithm.
he algorithm is analyzed in Section 4 and simulation results are

resented in Section 5. The paper concludes with Section 6.

2

2. Problem formulation and background

The multi-agent path planning problem is formulated be-
low. Then, the relevant background pertaining to the asymptoti-
cally optimal Rapidly-exploring Random Tree (RRT*) and collision
avoidance using collision cones is outlined.

Let there be N agents, each with the same continuous con-
figuration space, Xi = Xj = X ⊆ R2, where i, j ∈ {1, . . . ,N}.
The static obstacles, but not the other agents, are accounted for
in the agents’ obstacle space, Xobs,i = Xobs. Then, the free space
is, Xfree = X \ Xobs. Agent i has access to its world frame position,
ri ∈ Xfree, and velocity, vi ∈ R2. The physical volume of each agent
is approximated as a two-dimensional Euclidean ball centered at
xi ∈ Xfree with radius ρi, B(xi, ρi). The vector of zeros in R2 is
denoted as 0. The two-dimensional rotation matrix is defined as
R(θ ) ⊂ R2×2. Finally, the 2-norm is ∥

[
x y

]⊤
∥ =

√
x2 + y2.

The N agents are tasked with getting from their initial config-
rations, xI,i ∈ Xfree, to their goal configurations, xG,i ∈ Xfree. The
gents must never collide with other agents or static obstacles.
e say that, two agents i, j ∈ {1, . . . ,N} are in conflict if, by

taying on their current trajectory (heading and speed), they
ventually collide. Deconfliction is the act of an agent changing
ts velocity to avoid future collision.

In the next sections, we first provide an initial solution to
his problem that requires a synchronous information exchange
etween all agents by sending and receiving position and velocity
nformation at the same times. Then, we study how to relax
he communication requirements by means of an opportunistic
pproach, which reduces the communication frequency by only
equesting the position and velocity from a fellow agent when
ertain conditions are met. The agents request information at
ifferent times. This can be understood as a type of controlled
synchrony: communication only happens when necessary. These
onditions ensure that the agents remain collision free.

.1. The asymptotically optimal rapidly-exploring random tree algo-
ithm

This section briefly describes the RRT* algorithm by Karaman
nd Frazzoli which is theoretically analyzed in Karaman and
razzoli (2011). The kinodynamic RRT* is presented in Karaman
nd Frazzoli (2010).
The RRT*, outlined in Algorithm 1, builds a tree, T which is

ense with probability one in the entire configuration space, X , as
he number of samples, n, goes to infinity. The tree is composed
f a set of vertices, v ∈ T .V , and edges, e ∈ T .E. Each edge
s an ordered pair of vertices e1,2 = (v1, v2), where v1 is the
arent and v2 is the child. We use Cost as the notation for the
ost function being minimized. Each edge added to T has a cost
ssociated with it, denoted cedge(e), where e ∈ T .E. In the original
ork by Karaman and Frazzoli (2011), the edge cost considered

s the cost-to-go; that is the cost of e1,2 = (v1, v2) is the cost of
oving from the parent v1 to the child v2. Here, we consider the
ost-to-come, the cost of moving from the child to the parent.
hen, the cost-to-come of a vertex, Cost(v), is the sum of the
osts of the edges connecting the root to v. The paths in T are
symptotically optimal, meaning that as n→∞ the optimal path
rom any configuration in Xfree to the goal configuration, xG ∈
free, is recovered. The functions involved in the RRT* process are
escribed as follows. With some abuse of notation, we will define
robot configuration as xv instead of v.
After initializing T at xG, the RRT* begins by using the Sample

unction to output xrand, a uniformly sampled random configu-
ation from Xfree. The Nearest function finds the nearest vertex,
nearest ∈ T , and extends T a distance ε from xnearest to get xnew.
Next, the set of near vertices from T with respect to xnew

re output as the set X from the function Near. Vertices that
near
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re farther than δ = min(ε, γ (log(nv)/nv)(1/d)), where nv is the
umber of vertices in T , d is the dimension of the configura-

tion space (in this case 2), and γ is an independent parameter,
are omitted from Xnear. The best parent for xnew, determined in
FindBestParent, is the vertex in Xnear that has a collision-free path
from xnew to xnear, with the lowest Cost(xnew). The paths that
onnect the vertices to each other (determined using Steer), do
o according to the system dynamics. Only collision-free edges
re added to T . The collision checker, CollisionCheck, returns true
f the edge is collision-free. If xnew is added to T , then Rewire
ttempts to add the other vertices in Xnear as children of xnew
ased upon a lower cost and collision-free edge.

Algorithm 1 T = (V , E)← RRT∗(xI , xG, ε)
T ← InitializeTree();
T ← InsertNode(∅, xG, T );
for i = 1 to i = N do

xrand ← Sample(i);
xnew ← Nearest(T , xrand, ε);
Xnear ← Near(T , xnew);
xparent ← FindBestParent(Xnear, xnew);
if xparent ̸= NULL then

T ← InsertNode((xparent, xnew), xnew, T );
T ← Rewire(T , Xnear, xnew);

end if
end for
π ← GetPath(T , xI , xG);
return T

2.2. Collision cones for deconfliction

This section of the paper is based on the collision cones and
ollision avoidance strategy in Lalish (2009). Collision cones are
sed to determine and resolve conflict between agents. Recall
hat each agent is approximated as a circle with radius ρi ∈ R>0
nd let dsep,0 be the minimum allowable separation distance be-

tween any two agents. Then, agents i and j can be approximated
s points that are separated by a minimum distance of dsep,ij =
i+ρj+dsep,0. Denote the positions of agents i and j with respect
o a world frame as ri and rj, and similarly, their velocity vectors
i and vj, respectively. The relative position vector between agent
and j is defined as rij = rj − ri and the relative velocity vector
s defined as vij = vi − vj. The speed of agent i is denoted as
i = ∥vi∥.
A depiction of a collision cone is in Fig. 1. The collision cone

alf angle is αij = arcsin
( dsep,ij
∥rij∥

)
. The angle between the relative

osition and relative velocity vectors is βij = arccos
( rij·vij
∥rij∥∥vij∥

)
.

ote that αij and βij are functions of the rij and of vij, respectively.
he two edges of the collision cone between agents i and j are
efined using the unit vector ĉ±ij = R(±αij)

rij
∥rij∥

, where R(±αij)

re rotations about the cone axis. Note that the half angle αij = αji
nd that each cone contains the circle centered at agent j’s po-
ition with radius dsep,ij. The following proposition characterizes
onflicts between a pair of agents (which travel with a constant
elocity and direction) in terms of their collision cone.

roposition 1 (Lalish, 2009). Define a cone between two agents
s described above, with parameters βij = ̸ vij − ̸ rij, αij =

rcsin
( dsep,ij
∥rij∥

)
. Let rij be the relative position vector at the time

conflict that is being checked. A necessary and sufficient condition
for i and j not to be in conflict is |βij| ≥ αij.

In other words, from Proposition 1, we define a conflict be-
tween agents i and j if and only if |β | < α .
ij ij

3

While moving in the environment, agent i determines the
collision cones between itself and all other agents j ̸= i. When
etecting a conflict with at least one other agent, agent i applies
deconfliction maneuver, as discussed in Section 3, which moves
gent i out of conflict.

. Sampling-based collision avoidance

This section combines the RRT* algorithm, Section 2.1, with
he collision cone deconfliction strategy of Section 2.2. First, we
resent an algorithm that requires perfect and continuous com-
unication among all agents. In order to reduce communications
mong agents, we develop an alternative algorithm in Section 3.2.
he sporadic communication introduces uncertainty on the other
gents which is handled by dynamically growing the collision
ones.
Both algorithms are run independently on each agent, there-

ore, we describe them from the point of view of agent i. Agent i
ses its motion planning tree Ti to determine and update its path
o the goal which avoids the static obstacles. The collision cones
re used for collision avoidance between agents. Below, informa-
ion is used in reference to position and velocity knowledge of the
ther agents.
In an initialization step, all agents are given the maximum

elocity and the approximation radius, ρi, of all other agents.
n a preprocessing step to the algorithm, agent i recovers its
est path to the goal from Ti, denoted as πi = {xi(t1) =
I,i, xi(ti2 ), . . . , xi(tim ), . . . , xi(tif ) = xG,i}, where m ∈ N. Note that
ach agent may reach its specific goal at different times, tif . Once
t the goal, the agent sets its velocity to zero, vi = 0.
To reach xG,i while avoiding collision, agent i follows a path

enerated from an RRT*, which minimizes the distance traveled.
t each node in the path, the agent checks for conflict with the
ther agents. If there is no conflict, then the agent continues onto
he next edge in the path. When in conflict, the agent updates
ts velocity as described in Section 2.2, minimizing the distance
raveled. The final executed path for agent i, Πi, is in Xfree and
ollision free with respect to the other agents.

.1. Continuous information case

The pseudo-code for the Sampling-Based Collision Avoid-
nce algorithm with continuously received information is pre-
ented in Algorithm 2. First, the agent extracts a path to the goal.
hile the agent is not at the goal and no conflicts are detected,

t moves along its path. At each node in the path, the agent
mploys the current information received from the other agents.
f a conflict is detected, that is, βij < αij, for some other j, then
he agent updates its own velocity and obtains a new path to the
oal. The details of each step are shown below.

As agent i travels along its path, it checks for conflict with
he other agents j ̸= i. For each node in the path πi, agent i
nows its current time tim , position, ri = xi(tim ) ∈ πi, and velocity

i = vi
xi(tim+1 )−xi(tim )
∥xi(tim+1 )−xi(tim )∥ . The time at the next node is tim+1 with

t = tim+1 − tim . Agent i receives the current position, xj(tim ), and
velocity, vj(tim ), from all agents j ̸= i.

Once agent i has all the information for tim , it calculates the
collision cones. When in conflict, a new velocity vector, v′i , is cal-
ulated by solving Problem 1, which determines a deconfliction
aneuver that minimizes their cost-to-come Cost from the new
osition to the goal configuration.
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Algorithm 2 Πi ← Sampling− BasedCollisionAvoidance

[T , πi] ← RRT∗(xI,i, xG,i, ε);
ri = xI,i;
Πi.add(ri);
while ri ̸= xG,i do

ri, vi ← Move along path πi to next node
rj, vj ← Communicate with ALL agents
if Conflict (βij < αij) with agent j then

vi ← Update velocity via maneuvers, Problem 1;
if r′i ∈ Xobs,i then

Add obstacle to agent list
Restart while iteration

else
πi ← GetPath(T , ri, xG,i);

end if
end if
Πi.add(ri);
Remove obstacle from agent list

end while
vi = 0;
return Πi

Fig. 1. Depiction of a collision cone.

roblem 1.

min Cost(r′i)
s.t. Cost(ri) ≥ Cost(r′i)

r′i ∈ Xnear ≜ {x ∈ T .V |
∥x− ri∥

dt
≤ vi,max}

αij(r′ij) < βij(r′ij, v
′

ij), for all j ̸= i

here r′ij = rj − r′i and v′ij = v′i − vj,with v′i =
∥r′i − ri∥

dt
Agent i determines the cost-to-come for each configuration

in the finite set Xnear. If that cost is lower than, or equal to,
he current cost, then the possible new position and velocity are
hecked for conflict. Whichever conflict-free configuration lowers
he cost the most is chosen as the next position of agent i. Note
that the agent remaining at its current position, r′i = ri, is always
a valid solution to Problem 1 since ri is in Xnear and the cost-to-
ome remains the same, Cost(ri) = Cost(r′i). The agent will remain
ollision free since the other agents will update their velocities to
e conflict free.
To reduce computation time, the collision cones do not ac-

ount for the static obstacles, therefore the edge to the next
osition, r′i , is checked for collision with known obstacles from

. If the edge is in collision, then the offending obstacle is
obs

4

treated as an agent with zero velocity, vobs = 0. Agent i then
recalculates an updated velocity vector. If there is not a feasible
new velocity vector, agent i stops. Agent i can move again after, at
least one other agent has changed its velocity vector and it finds
a conflict free velocity vector.

Each conflict updates the path to the goal, πi. As discussed
in Section 4, under some conditions, the deconfliction maneuver
ensures that the agents never collide and the underlying RRT* en-
sures that the agents’ reach their respective goal configurations.

3.2. Collision avoidance under opportunistic interactions

Here, we introduce uncertainty into the position and velocity
knowledge of the other agents j ̸= i. It is at the expense of
increasing this uncertainty that agents can reduce the needed
communications with other agents. Agent i only requests rj and vj
from agent j when agent i thinks it is in ‘‘collision’’ or no solution
to v′i satisfies all the collision cone conditions. In the first case,
agent i only needs to update the rj and vj for the agent that is
ausing the ‘‘collision’’. In the second case, information from all
gents needs to be updated.
The uncertainty introduces some key differences with respect

o Algorithm 2. Algorithm 3 is thepseudo-code for the new algo-
ithm, the differences are highlighted in blue italics. The variables
j and vj, for all j ̸= i, are not received at each path node.
he information for agent j is updated if agent i thinks it is in
‘collision’’ with agent j, then the while loop is restarted. The
nformation for all the agents is updated if no feasible v′i exists,
he while loop then restarts.

Algorithm 3 Πi ← Opportunistic SB CollisionAvoidance

[T , πi] ← RRT∗(xI,i, xG,i, ε);
ri = xI,i;
Πi.add(ri);
while ri ̸= xG,i do

ri, vi ← Move along path to next node
if ∥ri − rj(tij)∥ < d̃sep,ij then

rj, vj ← Communicate with agent j ONLY
Restart While Iteration

else if Conflict (β̃ij < α̃ij) with agent j then
vi ← Update velocity
if vi Does Not Exist then

for j ̸= i do
rj, vj ← Communicate with ALL agents

end for
Restart While Iteration

end if
if r′i ∈ Xobs,i then

Add obstacle to agent list
Restart while iteration

else
πi ← GetPath(T , ri, xG,i);

end if
end if
Πi.add(ri);
Remove obstacle from agent list

end while
vi = 0;
return Πi

Let tij be the time agent i last received rj and vj from agent j.
Every time information is requested at a node xi(tim ), we update
tij = tim , and agent i calculates v′i using perfect information from
agent j. In a future time tim > tij since the last update, a time
increment δt = t −t has elapsed, and thus agent j is somewhere
im ij
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ithin a ball centered at rj with radius vj,maxδt , B(rj, vj,maxδt). The
ncertain values, r̃j = rj(tij) and ṽj = vj(tij), are used in place

of the certain values when calculating the collision cones and
possible velocity-update maneuvers. The worst-case separation
distance is now d̃sep,ij = dsep,ij + vj,maxδt . The uncertain relative
position is r̃ij = r̃j − ri and the uncertain relative velocity is ṽij =

vi − ṽj. This leads to an uncertain half angle, α̃ij = arcsin
(

d̃sep,ij
∥r̃ij∥

)
,

nd an uncertain angle between the relative velocity and position,
˜ ij = arccos

(
r̃ij·ṽij
∥r̃ij∥∥ṽij∥

)
.

3.3. Computational limitations

The above algorithms assume that communication and cal-
culations can be done instantaneously as the agents reach the
next node in their path. While fast replanning and evaluation of
the collision-check condition can be done in a computationally
efficient manner, communications may not be possible instan-
taneously. At each iteration, agent i may need to communicate
with up to N − 1 other agents simultaneously before finishing
their calculations. To account for communication delays, agent i
an start their calculations for a future node in its path, xi(tim ), as
oon as they finish the calculations for the previous node to that
ne, xi(tim−1 ). These calculations for node xi(tim ) cannot, however,
e completed until agent i receives all the relevant information
rom an agent j at a future time tim .

There are three cases to consider regarding the type of fu-
ure information required from an agent j: (i) No information is
eeded from j: in this case, agent j does not send any information;
ii) the next node for agent j is reached after tim , then agent j sends
ts current information; (iii) the next node for agent j is reached
efore tim : agent j waits until their calculations are complete, then
ends the future information. Once all required agents have sent
heir current or future information, agent i can complete their
alculations for time tim .
While agent i is not guaranteed to receive all needed informa-

ion before they reach xi(tim ), any extra time is an improvement
ver doing the calculations instantaneously. Future work will
e devoted to more systematically addressing communication
elays.

. Algorithm analysis

This section details the analytical results for the collision
voidance algorithms introduced in the last section. We prove
hat a system of agents all running the Sampling-Based Collision
voidance algorithm, or the sporadic communication version,
pportunistic Sampling-Based Collision Avoidance algorithm,
ill arrive at their goal configurations without collision. This first
esult, Lemma 1, guarantees that the agents will remain collision
ree while running the Sampling-Based Collision Avoidance
lgorithm.

emma 1. Let there be N agents in an environment with static
bstacles all running the Sampling-Based Collision Avoidance
lgorithm. If the agents begin collision free then with probability one
hey will stay collision free for all times.

roof. An agent can collide with other agents or static obstacles.
irst, we guarantee that agents will not collide with one another.
ecall, the agents check and update their velocity at each node in
heir path from the RRT* graph. Because the RRT* is built using
andom samples, the probability that more than one agent will
hange their velocity at the same time is zero. Every time an
gent is in conflict, see Proposition 1, it changes its velocity to
5

be out of conflict with all other agents. This keeps the agent
from colliding with another agent. In the case when there are no
feasible velocities, the agent stops and therefore does not collide
with any other agent. Static obstacles are avoided by extracting
paths from the RRT*. This covers all possible scenarios an agent
may encounter, thus keeping the agent collision free. □

There are two types of situations that cause the agents to
never reach their goals: deadlock and livelock. A deadlock occurs
when none of the agents are able to find a feasible velocity and
therefore must set their velocities to zero to avoid collision. A
livelock is when the agents can find a feasible velocity but will
never reach their goals. Assumption 1, related to deadlock, says
there will always exist a static RRT* solution for at least one agent.

Assumption 1. At all times, there is at least one agent able to
treat the other agents as static obstacles and replan using the
RRT* to find a collision free path to the goal. This path has a
reachable node with a strictly lower cost. •

Remark 1. When a deadlock occurs, all the agents have a zero
velocity, they pause the sampling-based collision avoidance al-
gorithm they are running. The agents then build a standard RRT*
tree with an Xobs that contains the other agents as static obstacles.
Let agent i be at node ri in the original path πi and let the path
after replanning be πnew. Assumption 1 implies that, for some
agent i, the new path πnew exists and contains a collision-free
ode x that has a lower cost-to-come compared to the cost-to-
ome before replanning, Cost(ri ∈ πi) > Cost(x ∈ πnew). This
assumption is reasonable in uncluttered environments with a
small number of agents. If the deadlocked agents are contained
in a bounded area, agents do not travel very fast, and the envi-
ronment is sufficiently large, this condition should be met for at
least one agent.

To guarantee all agents reach their goal configuration, we
impose Assumption 2 on the problem.

Assumption 2. When an agent reaches its goal configura-
tion, it does not keep any other agent from reaching its goal
configuration. •

In Theorem 1, agents are shown to decrease the cost-to-come
at each step when subject to Assumption 1.

Theorem 1. Let there be N agents in an environment with static
obstacles all running the Sampling-Based Collision Avoidance
algorithm 2 with a deconfliction maneuver that solves Problem 1.
Let Assumptions 1 and 2 hold. Then, with probability one, all agents
will decrease their cost-to-come at each step until they converge to
their goal configurations.

Proof. To prove convergence to the goal configurations, xG,i, we
use Lyapunov’s direct method. The Lyapunov function is defined
as,

V (r1, . . . , rN ) ≜
N∑
i=1

Cost(ri).

he first condition is that,

(r1, . . . , rN ) = 0 ⇐⇒ [r1, . . . , rN ] = 0,

which is true. The second condition is,

V (r1, . . . , rN ) > 0 ⇐⇒ [r1, . . . , rN ] ̸= 0,

which is true. The final condition is that V (r1, . . . , rN ) always
decreases. We now examine each of the situations to show that

the cost always decreases.
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According to the Sampling-Based Collision Avoidance algo-
ithm, each agent i will either move to the next node in πi,
erform a deconfliction maneuver, or stop. First, when the agent
ravels to the next node in πi, recall that, the RRT* finds, with
robability one, an optimal path for each agent with respect
o the goal configuration. If the agent is traveling along a path
xtracted from its RRT* then the cost-to-come decreases,

i(ri) = Cost(ri ∈ πi) > Cost(r′i ∈ πi) = Vi(r′i).

Secondly, we consider the deconfliction maneuver case. The ma-
neuver, determined by solving Problem 1, guarantees with prob-
ability one that, at each step, the cost-to-come decreases,

Vi(ri) = Cost(ri ∈ πi) > Cost(r′i ∈ πi) = Vi(r′i).

Lastly, we address the situation where the agent stops. The agent
could be part of a deadlock or the agent could start moving again
because another agent moved.

When the agent stops (not in a deadlock) and is able to start
moving again, the cost evolves as,

Vi(ri) =Cost(ri ∈ πi)
= Cost(ri ∈ πi) > Cost(r′i ∈ πi) = Vi(r′i).

All previous cases lead to a strict decrease of a Lyapunov function.
However, assume all agents get into a deadlock. Under As-

sumption 1, the deadlocked agents replan, treating the other
agents as static obstacles, vj = 0. When agent i stops at node
ri, the cost-to-come stays constant, Cost(ri ∈ πi), after replanning
it may increase, Cost(ri ∈ πi) ≤ Cost(r′i ∈ πi,new). Recall that from
Assumption 1, agent i will move to node r′i , which will decrease
the cost-to-come,

Vi(ri) = Cost(ri ∈ πi) > Cost(r′i ∈ πi,new) = Vi(r′i).

Note, the other agents are moving along their paths in a
similar fashion and are therefore, decreasing their cost-to-come,
Cost(rj ∈ πj). From the above, we can see

Vj(rj) > Vj(r′j),

for all agents j, and therefore,

V (r1, . . . , rN ) > V (r′1, . . . , r
′

N ).

Using a standard Lyapunov argument, we have now shown that
the agents will asymptotically converge to their goal regions with
probability one.

Finally, we prove that the agents will in fact reach their goal
configurations in finite time. The sum of the cost-to-come of the
agents cannot converge to a strictly positive value. This is due to
the fact that, by construction of the RRT* trees, the edges have a
cost that is uniformly lower bounded away from zero. The RRT*
tree has a finite number nodes and therefore a finite number of
edges, which leads to the conclusion. □

4.1. Opportunistic collision-avoidance algorithm analysis

Now, we turn to the Opportunistic Sampling-Based Collision
Avoidance algorithm 3.

First, Lemma 2 states that if agent i is more than d̃sep,ij distance
away from agent j for all time, then agent i and jwill never collide.

Lemma 2. If d̃sep,ij ≤ ∥ri − r̃j∥ for all time, then dsep,ij ≤ ∥ri − rj∥
for all time.

Proof. By definition of d̃sep,ij, we know d̃sep,ij ≥ dsep,ij and ∥r̃j −
rj∥ ≤ vj,maxdt = d̃sep,ij − dsep,ij. The triangle inequality gives
∥ri− rj∥+∥r̃j− rj∥ ≥ ∥ri− r̃j∥. Putting everything together gives,

d̃ ≤ ∥r − r̃ ∥ ≤ ∥r − r ∥ + ∥r̃ − r ∥,
sep,ij i j i j j j

6

d̃sep,ij ≤ ∥ri − rj∥ + d̃sep,ij − dsep,ij,

d̃sep,ij − d̃sep,ij + dsep,ij ≤ ∥ri − rj∥,
dsep,ij ≤ ∥ri − rj∥. □

The following Theorem 2 is the parallel convergence result to
Theorem 1, but for the Opportunistic Sampling-Based Collision
Avoidance algorithm.

Theorem 2. Let there be N agents in an environment with static
obstacles all running the Opportunistic Sampling-Based Colli-
sion Avoidance algorithm 3. Let Assumption 1 hold and assume
that, when an agent has reached its goal configuration, it does not
keep any other agent from reaching its goal configuration. Then,
with probability one, all agents will eventually reach their goal
configurations via a collision free path. •

The proof for Theorem 2 follows that of Theorem 1, but using
the uncertain values. Because of the algorithm implementation,
agent i is never within d̃sep,ij of any agent. Following the same
Lyapunov arguments as in the proof of Theorem 1 each agent will
reach its goal configuration.

The uncertain velocity, ṽj, does not guarantee that agent i
and agent j will be conflict free for all time. This is fine since
accounting for the position uncertainty keeps the two agents from
colliding. When the two agents, i and j, become close to one
another, the algorithm naturally let these agents communicate at
each node.

At this point, Lemma 1 holds and the agents are conflict free
during this period. Once the agents move away from each other,
the communication returns to being sporadic as prescribed by
the uncertain collision cones. Then, by Lemma 2, agent i is never
within dsep,ij of any agent j and will remain collision free.

Remark 2. Even though it can be proven that the uncertainty
cones contain the true cones, the else-if block of the algorithm
alone does not guarantee that the trajectories of agents remain
conflict-free. This is because all possible velocities for agents are
not considered (which define a cone of velocities). The else-if
block leads to an approximate conflict-checking condition. When-
ever the true velocities and position values are used, the if-else
block results in a true condition and deconfliction maneuver. An
alternative opportunistic algorithm would consist of using the set
of all possible agent velocities and the uncertainty cones. Our
algorithm choice avoids the construction and intersection of such
sets, and results in an simpler implementation which guarantees
collision free trajectories given by Theorem 2.

5. Simulations

The following simulations involve four agents each repre-
sented by a different color and shape set: blue stars, red triangles,
magenta squares, and green circles. The initial configurations are
at the boundary of the space, represented by large colored dots.
Each agents’ final configuration is at the opposite side of the
environment. The underlying RRT* trees are constructed with
respect to ten randomly placed static obstacles. The agents are
all approximated using the same radius, ρi = ρj = 0.5 for all
i, j ∈ {1, . . . ,N}. The maximum velocities for each agent are all
different.

Fig. 2 depicts the problem with the initial best path in black
and the final paths determined by Opportunistic Sampling-
Based Collision Avoidance algorithm 3 in color. The separation
distance between an agent i (blue stars from Fig. 2) and all
other agents j is shown in Fig. 3. The black line is the minimum
separation distance, dsep,ij. The three agents get close to agent i
but never violate the d condition. The cost-to-come of each
sep,ij
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able 1
omparison of the results for two different simulations with four agents each. The first simulation has the same setup as Fig. 2. The second simulation has the same
nitial agent configuration as the other one but there are no static obstacles in the space.
Agents Iterations Communication savings Peak difference: Position Peak difference: Velocity Max ρ

Mean Percentage Mean Maximum Mean Maximum

1 166 49.67 9.97 0.18 0.68 0.15 1.18 8.06
2 81 26.00 10.70 0.10 0.30 0.09 0.52 4.27
3 115 25.00 7.25 0.12 0.36 0.05 0.17 4.81
4 112 18.67 5.56 0.10 0.24 0.09 0.24 4.00

Mean 118.5 29.84 8.37 0.13 0.68 0.10 1.18 5.29

1 107 39.33 12.25 0.32 2.13 0.19 0.96 8.39
2 87 80.00 30.65 0.48 1.19 0.28 0.73 7.36
3 114 53.67 15.69 0.20 1.04 0.24 1.36 4.35
4 82 22.00 8.94 0.21 1.07 0.14 0.73 4.99

Mean 97.50 48.75 16.88 0.26 2.13 0.22 1.36 6.27
h
f

Fig. 2. The initial paths (black) and final paths (colored). The red hexagons are
static obstacles that must be avoided.

Fig. 3. The distance between agent i (blue stars from Fig. 2) and the other three
agents over time.

agent over time is shown in Fig. 4. Note that the cost-to-come
never increases. It either stays constant or decreases.

There are two different four agent simulations compared in
Table 1. The first simulation is in the same environment depicted
in Fig. 2. The second simulation was done in an environment
without any static obstacles, but the same initial and final agent
configurations as in Fig. 2. The results for each simulation are
broken down by agent. Each agent has the potential to commu-
nicate with the other three agents during every iteration of their
algorithm execution. The mean number of times agent i saves
on communicating with a particular agent j is calculated as the
total number of communication savings for agent i divided by
the number of other agents, in this case three. The percentage
of communication savings is the total number of communication
savings divided by the total number of possible communications
(three times the number of iterations). The mean peak looks at
7

Fig. 4. The cost-to-come for each of the four agents as a function of time.

ow much the error grows before a communication occurs. The
inal column is the maximum radius, ρ, value each agent saw
during the algorithm. Notice that the error caused by the uncer-
tainty is not very different for each simulation. This is because
the obstacles are already accounted for in the underlying graph.
The only time an obstacle would affect the algorithm would be
if an agent was about to collide with one. An environment dense
with obstacles could see an increase in communication compared
to the same setup without any, or fewer, obstacles.

The simulation with obstacles needs more communications
between agents than the no obstacle simulation. This makes sense
because the obstacles limit the set of possible velocities when
solving Problem 1.

In the obstacle free environment, the potential velocities are
only limited by the other agents. Therefore, there are fewer times
when a feasible velocity cannot be found. Thus, reducing the
number of communications needed.

Two additional simulations were completed to show a more
complex setup. Each simulation has five agents with the ini-
tial configurations at the boundary of the space, represented
by large colored dots. Fig. 5 has three additional obstacles and
one addition agent compared to Fig. 2. The additional obstacles
were placed so agents would need to navigate around them to
reach their goal configuration. Fig. 6 has three large obstacles
that prevent the agents from reaching their goal configurations
without going around at least one of the obstacles. Notice that
two of the agents have goal configurations that are relatively
close to one another, and are still able to successfully reach
their goal configurations. During both simulations, the Cost never
increases, the minimum separation distance is maintained, and all
the agents reach their goal configurations.

The communication savings for each of the simulations in
Figs. 5 and 6 are compared in Table 2. The average communication
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Table 2
Comparison of the communication savings results for two different simulations with five agents each. The first simulation is Fig. 5.
The second simulation is Fig. 6.
Agents Communication saving for Fig. 5 Communication saving for Fig. 6

Iterations Mean Percentage Iterations Mean Percentage

1 61 4.0 6.56 45 9.50 21.10
2 51 3.8 7.35 17 9.75 57.35
3 34 0.0 0.0 55 18.0 32.73
4 24 6.0 25.0 21 4.75 22.62
5 64 2.0 3.13 51 30.5 59.80

Mean 46.8 3.15 8.40 37.0 14.5 38.72
W
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Fig. 5. The initial paths (black) and final paths (colored). The red hexagons are
static obstacles that must be avoided.

Fig. 6. The initial paths (black) and final paths (colored). The red shapes are
static obstacles that must be avoided.

savings percentage for the simulation in Fig. 5, is 8.40%. The
average communication savings percentage for the simulation in
Fig. 6, is 38.72%. The obstacles in Fig. 6 make the agents travel
around them in such a way that they are less likely to interact
with the other agents causing a higher communication savings.
Whereas with Fig. 5 environment, the agents are all headed for
(and pass through) the center of the environment. Without the
deconfliction algorithm, the agents in Fig. 5 would likely collide
as they all reached center near the same time.

6. Conclusion

This paper presented a multi-agent path planning algorithm
or sporadically communicating agents. As a starting point, an
ncertainty-free algorithm merges the sampling-based path plan-
er RRT* with collision cones for collision avoidance. Under some
onditions this algorithm is proven to avoid collisions between
gents and solve the planning problem. In order to reduce com-
unications, controlled uncertainty in the agents’ knowledge of

he position and velocity of the other agents is introduced. The
esulting opportunistic algorithm is then analyzed in a similar
8

manner as the perfect-information case. Simulations show that
a collision free solution is found under uncertain knowledge.
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