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Abstract—This work finds a lower bound on the aver-
age dwell-time (ADT) of switching signals such that a
continuous-time, graph-based, switched system is glob-
ally asymptotically stable, input-to-state stable, or integral
input-to-state stable. We first formulate the lower bound on
the ADT as a nonconvex optimization problem with bilinear
matrix inequality constraints. Because this formulation is
independent of the choice of Lyapunov functions, its solu-
tion gives a less conservative lower bound than previous
Lyapunov-function-based approaches. We then design a
numerical iterative algorithm to solve the optimization
based on sequential convex programming with a convex-
concave decomposition of the constraints. We analyze the
convergence properties of the proposed algorithm, estab-
lishing the monotonic evolution of the estimates of the
average dwell-time lower bound. Finally, we demonstrate
the benefits of the proposed approach in two examples and
compare it against other baseline methods.

Index Terms—Stability of switched systems, average
dwell-time, sequential convex programming.

I. INTRODUCTION

SWITCHED systems are a class of hybrid systems
which play an important role in modeling real-world

processes [1]. A switched system is defined by a collection
of dynamical subsystems and a switching signal that governs
the transitions between them. In general, switched systems
do not inherit the stability properties of their subsystems
under arbitrary switching, see, e.g., [2]. Many works aim to
find sufficient conditions on the switching signals to ensure
desirable stability properties. These include dwell-time (DT)
(resp. average dwell-time (ADT)) conditions, which bound
the number (resp. the average number) of allowed switches
over an arbitrary time interval, guaranteeing global asymptotic
stability (GAS) of the switched system [3], [4]. For systems
with inputs, input-to-state stability (ISS), integral input-to-
state stability (iISS) can be guaranteed for switched systems
with switching signals satisfying similar DT [5], [6] or ADT
conditions [7], [8].
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In practice, switching signals are often designed indepen-
dently of the subsystems. Hence, a lower bound on the DT
(resp. the ADT) solely based on the information of the dynam-
ics of the subsystems can provide an important design criteria
to prevent de-stabilization by the switching action of the sig-
nal. To broaden the class of admissible switching signals, one
would like such lower bounds to be as small as possible.
However, the DT or ADT lower bounds proposed in the litera-
ture [3]–[9] depend heavily on the Lyapunov functions chosen
for stability analysis and may therefore be conservative. In par-
ticular when the switched system is graph-based (that is, when
the mode changing during a switch is restricted to be an edge
of a graph), the DT or ADT lower bounds computed using a
naive choice of Lyapunov functions may be far from satisfac-
tory. To address this, the work [10] proposes an optimization
formulation whose constraints include matrix exponentials,
which make the problem not directly solvable. [11] proposes
an alternative optimization problem formulation where the
decision variables are matrix functions. By assuming such
matrix functions are polynomials, the problem is solved with
the aid of sum-of-squares programming. On the other hand,
the work [12] leverages the eigenvectors of each subsystem
to propose a different formula for a DT lower bound. The
research of finding DT lower bounds has also covered discrete-
time systems [13], [14]. To guarantee stability of the overall
system, the aforementioned works utilize the idea of pairing
and neutralizing the destabilizing effects of switches with the
stabilization effect provided by mode dwelling. This simple
idea is inapplicable for finding ADT lower bounds, as switch-
ing signals satisfying ADT condition are more flexible, which
might explain the relative low number of works on this topic.
To the best of our knowledge, the work [15], extending [12],
aims to use a cycle ratio of the graph-based switched system
for computing an ADT lower bound. Finally, the work [16]
proposes a way to verify whether a positive number is a valid
ADT lower bound on the switching signals so that the switched
system is stable.

The contributions of this letter address the gaps identi-
fied above by (i) formulating the problem of finding an ADT
lower bound as a nonlinear optimization with bilinear matrix
inequality (BMI) constraints; and (ii) proposing and analyz-
ing a numerical iterative algorithm to solve the resulting
optimization problem. We emphasize here that finding a lower
bound on the ADT for ensuring stability using optimization
techniques is novel. A key aspect of our optimization formula-
tion is its independence of the choice of Lyapunov functions,
which we accomplish building on the result in [17] establish-
ing a common ADT lower bound guaranteeing GAS, ISS or
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iISS of switched systems when the unforced dynamics are lin-
ear. We tackle the nonconvexity of the optimization problem
using sequential convex programming (SCP) with the tech-
nique of convex-concave decomposition of constraints. Our
simulations show that our algorithm computes an ADT lower
bound which is much smaller than the values produced by the
baseline approaches in various sample switched systems.

II. PRELIMINARIES

Notation: We denote by S
n ⊂ R

n×n the set of symmetric
matrices. For any M ∈ S

n, we denote M � 0 (resp. M � 0) if
M is positive definite (resp. positive semi-definite). In addition,
M1 � M2 if M1 − M2 � 0. Analogous definitions hold for
(semi-)negative definiteness.

Switched Systems and Switching Signals: Consider a digraph
G = (V, E) where V = {1, 2, . . . , p} and E ⊂ V×V . For each
i ∈ V there is a locally Lipschitz vector field fi : R

n ×R
m →

R
n. According to [2], a switched system is referred by the

differential equations

ẋ = fσ (x, ω), (1)

where x ∈ R
n is the state, ω ∈ R

m is the input and σ ∈ V is
the mode. Let � be the set of all right-continuous, piece-
wise constant mappings from [0,∞) to V with a locally
finite number of discontinuities, called switching signals. For
each switching signal σ ∈ �, define the switch instants
T (σ ) := {t > 0 : σ(t) 	= σ(t−)} where t− denotes the left
limit of the function at t. With this data, the dynamics of the
switched system is described by

ẋ(t) = fσ(t)(x(t), ω(t)), if t 	∈ T (σ ), (2a)

x(t) = x(t−), if t ∈ T (σ ). (2b)

We now specify the class of switching signals for which we
study the stability of system (2). We say a switching signal σ

has an underlying switching graph G if (σ (t−), σ (t)) ∈ E for
all t ∈ T (σ ); in other words, the system is only allowed to
switch from mode i to j if (i, j) is an edge of G. According
to [4], a switching signal σ has an average dwell-time (ADT)
of τa (equivalently, σ satisfies the ADT constraint) if there
exist τa > 0 and N0 ≥ 1 such that

∀t2 ≥ t1 ≥ 0 : Nσ (t1, t2) ≤ N0 + t2 − t1
τa

, (3)

where Nσ (t1, t2) := |(t1, t2] ∩ T (σ )|. In other words, on
average there can be at most one switch per τa units of time.

III. A UNIFORM ADT LOWER BOUND FOR

STABLE SWITCHED SYSTEMS

In this work, we study two well-known stability proper-
ties, input-to-state stability (ISS) and integral input-to-state
stability (iISS), for the switched system (1). Due to space
constraints, we refer the readers to [18], [19] for their defi-
nitions. It is seen that when (1) has no input (ω = 0), both
ISS and iISS reduce to global asymptotic stability (GAS).
Interestingly, although GAS, ISS and iISS are different sta-
bility notions, they all can be guaranteed with the same ADT
condition on the switching signal for some switched systems.
Formally, consider the switched linear system without input

ẋ = Aσ x, (4)

the switched linear system with linear input

ẋ = Aσ x+ Bσ ω (5)

and the switched system with linear and bilinear inputs

ẋ = Aσ x+ Bσ ω +
mc∑

j=1

Cσ,jxωj. (6)

The following result establishes that an appropriate lower
bound on τa ensures that these systems are, respectively, GAS,
ISS, and iISS.

Theorem 1 ([7, Th. 3.1], [17, Proposition 12]): Given a
digraph G = (V, E), let the matrix Ai ∈ R

n×n be Hurwitz for
all i ∈ V . Consider the switched systems (4), (5) or (6) and
assume the switching signal σ has an underlying switching
graph G with ADT τa. Let Pi ∈ S

n, Pi � 0 and suppose that
the inequalities

A�i Pi + PiAi + λPi � 0, ∀i ∈ V, (7a)

Pj − μPi � 0, ∀(i, j) ∈ E, (7b)

hold for some μ ≥ 1, λ > 0. If τa >
ln μ
λ

, then the
systems (4), (5) and (6) are GAS, ISS and iISS, respectively.

We refer to the parameter ln μ
λ

as the ADT lower bound.
The smaller this bound is, the larger the set of switching
signals to which Theorem 1 applies, and hence the greater
the design flexibility for the switched system is. Notice that
Theorem 1 only provides a sufficient condition, and hence the
ADT lower bound might be conservative. This bound depends
on the choices of Pi’s, μ, and λ. We observe that if Pi’s
are fixed, μ and λ can be optimized to give a minimal ADT
lower bound while preserving the inequalities (7a) and (7b).
However, the matrices Pi’s are related to the Lyapunov func-
tions chosen for the subsystems and they are not unique. In
order to maximize λ, each Pi needs to be tailored to Ai, in
which case the Pi’s might be very different from each other,
causing μ to become large. On the other hand, in order for μ

to be as close to 1 as possible, the Pi’s need to be close to
each other. In that case the Lyapunov functions of some sub-
systems may dissipate slowly and thus λ may become small.
These observations point out to the trade-offs in the selection
of the matrices Pi’s when minimizing the ADT lower bound.
Instead, one can formulate the following optimization problem
to find the best choice of μ, λ and Pi’s which give the minimal
ADT lower bound:

(P1) minimize{Pi}i∈V ,μ,λ

ln μ

λ
(8a)

subject to μ ≥ 1, (8b)

λ > 0, (8c)

Pi � 0 ∀i ∈ V, (8d)

and (7a), (7b).

The next result is a direct consequence of Theorem 1.
Corollary 1: Given a digraph G = (V, E), let the matrices

Ai ∈ R
n×n be Hurwitz for all i ∈ V . Denote the optimal

value of (P1) by τ ∗ = ln μ∗
λ∗ . Then if a switching signal σ has

underlying switching graph G with ADT satisfying τa > τ ∗,
then the switched system (4) is GAS, (5) is ISS and (6) is iISS.

Comparing Corollary 1 with Theorem 1, we see that the
ADT lower bound τ ∗ in Corollary 1 only depends on the
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Algorithm 1 Computation of Minimum ADT Lower Bound

Input: (V, E), {Ai}i∈V , {P(0)
i }i∈V , μ(0), λ(0), ε

1: τ (0) ← ln μ(0)

λ(0)

2: for k = 1, 2, · · · do
3: Convexify (P1) around {P(k−1)

i }i∈V , μ(k−1), λ(k−1)

4: Solve the convexified problem, set {P(k)
i }i∈V , μ(k), λ(k) equal

to the obtained minimizer
5: τ (k) ← ln μ(k)

λ(k)

system matrices Ai’s, and it is less conservative than the one
given in Theorem 1.

We remark here that (P1) is NP-hard in general and can-
not be solved directly since 1) the objective function (8a) is
nonlinear and nonconvex, and 2) the constraints (7a) and (7b)
are BMI constraints, which are nonconvex. The problem we
address in the rest of this letter is how to tackle the challenges
involved in solving (P1).

IV. SOLVING THE NONLINEAR OPTIMIZATION PROBLEM

In this section, we first establish the feasibility of
problem (P1) in Section IV-A and then design a SCP to
solve it.

A. Feasibility of the Problem
We first establish the feasibility of problem (P1); that is,

whether there exist Pi ∈ S
n for all i ∈ V and μ, λ ∈ R

satisfying the constraints (7a), (7b), (8b), (8c) and (8d).
Lemma 1: The optimization problem (P1) is feasible when

all Ai’s are Hurwitz matrices.
Proof: Since all Ai’s are Hurwitz, there exist Pi ∈ S

n, Pi � 0
that solve the Lyapunov equations

A�i Pi + PiAi + I = 0 ∀i ∈ V. (9)

Set λ := 1
σ̄

, μ := σ̄
σ

where σ̄ := maxi∈V σmax(Pi),
σ := mini∈V σmin(Pi) and σmax(Q), σmin(Q) denotes the
largest/smallest singular values of a matrix Q, respectively.
Note that all constraints in (P1) are satisfied since σ I � Pi �
σ̄ I, for all i ∈ V .

B. Approximation of the Objective and Constraint
Functions

Here we design an SCP to solve problem (P1). The
pseucode is summarized in Algorithm 1. Our ensuing dis-
cussion elaborates on each of the steps in Algorithm 1. In
the k-th iteration, we convexify the problem (P1) around
{P(k−1)

i }i∈V , μ(k−1), λ(k−1). This convexification is done by
linearizing the objective function (8a), followed by adding
a quadratic regularization term, and convex-concave decom-
position of the BMI constraints (7a), (7b) using techniques
similar to the ones in [20]. We then compute an ADT lower
bound τ (k) using the data μ(k), λ(k) and repeat this process.
The convergence analysis is presented in Section IV-C.

1) Approximation of the Objective Function: We approximate
f in (P1) linearly around (μ†, λ†) by

L fμ†,λ†(μ, λ) := ln μ†

λ† +
(

1
μ†λ† − ln μ†

(λ†)2

)(
μ− μ†

λ− λ†

)
.

(10)

Note that the second term is the directional derivative of f at
(μ†, λ†), in the direction of (μ − μ†, λ − λ†). The objective
function f can also be locally approximated by a quadratic
function by taking into account its Hessian. However, since f
is nonconvex, its Hessian is sign indefinite and the quadratic
optimization problem cannot be solved efficiently.

2) Approximation of the BMI Constraints: We first approxi-
mate the BMI constraints (7a) with linear matrix inequality
(LMI) constraints. For each i ∈ V , (7a) can be rewritten in
quadratic form as

⎛

⎝
Ai
Pi
λ
2 I

⎞

⎠
�
�

⎛

⎝
Ai
Pi
λ
2 I

⎞

⎠ � 0, with � :=
⎛

⎝
0 I 0
I 0 I
0 I 0

⎞

⎠. (11)

Notice that � is a 3n×3n symmetric matrix, with eigenvalues
−√2, 0, and

√
2, all of multiplicity n. Let V denote an orthog-

onal matrix whose columns are eigenvectors of �. Divide both
sides of (11) by

√
2 and define

R̂(Pi, λ) :=
⎛

⎝
Ai
Pi
λ
2 I

⎞

⎠
�⎛

⎝
0
0
I

⎞

⎠(0 0 I
)
V�
⎛

⎝
Ai
Pi
λ
2 I

⎞

⎠,

Ř(Pi, λ) :=
⎛

⎝
Ai
Pi
λ
2 I

⎞

⎠
�

V

⎛

⎝
I
0
0

⎞

⎠(I 0 0
)
V�
⎛

⎝
Ai
Pi
λ
2 I

⎞

⎠,

the inequality in (11) becomes

R̂(Pi, λ)− Ř(Pi, λ) � 0. (12)

Notice that by definition, both R̂ and Ř are positive semidef-
inite and convex. Using this fact, we can write, for any
Pi, P†

i ∈ S
n and λ, λ† > 0,

Ř(Pi, λ) � L ŘP†
i ,λ

†(Pi, λ)

:= Ř(P†
i , λ

†)+ DŘ(Pi, λ)(Pi − P†
i , λ− λ†), (13)

where L ŘP†
i ,λ

† is the linearization of Ř around (P†
i , λ

†) and

DŘ(x)(v) is the directional derivative of Ř evaluated at x in
the direction of v. The latter can be explicitly computed as

DŘ(Pi, λ)(Pi − P†
i , λ− λ†)

=
⎛

⎝
0

Pi − P†
i

λ−λ†

2 I

⎞

⎠
�

V

⎛

⎝
I
0
0

⎞

⎠(I 0 0
)
V�
⎛

⎝
Ai

P†
i

λ†

2 I

⎞

⎠

+
⎛

⎝
Ai

P†
i

λ†

2 I

⎞

⎠
�

V

⎛

⎝
I
0
0

⎞

⎠(I 0 0
)
V�
⎛

⎝
0

Pi − P†
i

λ−λ†

2 I

⎞

⎠.

Consider the following inequality

R̂(Pi, λ)− L ŘP†
i ,λ

†(Pi, λ) � 0. (14)

From (13), we see that (12) holds whenever (14) holds. This
means the feasible set of Pi, λ given by the constraint (14) is
a subset of the feasible set given by the constraint (12). Thus,
if we fix P†

i , λ
† and replace the constraint (7a) by (14) in (P1),

the optimal value of the objective function will in general be
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larger. Note that by using the definition of R̂ and applying the
Schur complement [21], (14) is equivalent to the LMI
⎛

⎜⎜⎜⎜⎜⎜⎝

I
(
0 0 I

)
V�
⎛

⎝
Ai
Pi
λ
2 I

⎞

⎠

(
A�i Pi

λ
2 I
)
V

⎛

⎝
0
0
I

⎞

⎠ L ŘP†
i ,λ

†(Pi, λ)

⎞

⎟⎟⎟⎟⎟⎟⎠
� 0.

(15)

Using similar convex-concave decomposition and lineariza-
tion, the constraints (7b) can also be approximated by LMI
constraints

⎛

⎜⎜⎝
I

(
I 0

)
U�

(
Pi
μ
2 I

)

(
Pi

μ
2 I
)
U

(
I
0

)
L ŜP†

i ,μ
†(Pi, μ)− Pj

⎞

⎟⎟⎠ � 0, (16)

where the columns of U are the eigenvectors of

(
0 I
I 0

)
and

L ŜP†
i ,μ

†(Pi, μ) =
(

Pi − P†
i

μ
2 I

)�
U

(
0
I

)(
0 I

)
U�

(
P†

i
μ†

2 I

)

+
(

P†
i

μ†

2 I

)�
U

(
0
I

)(
0 I

)
U�

(
Pi
μ
2 I

)
.

C. The Convex Subproblem
In this section we combine the aforementioned approxima-

tions for the objective function and constraints and summarize
the convex subproblem formulated and solved in Steps 3 and
4 of Algorithm 1. To this end, for P†

i ∈ S
n, μ†, λ† ∈ R and

parameters cλ, cμ, cP ≥ 0, define the regularization function

rP†
i ,μ

†,λ†({Pi}i∈V , μ, λ)

:= cP

∑

i∈V
‖Pi − P†

i ‖2F + cμ(μ− μ†)2 + cλ(λ− λ†)2. (17)

This function is a weighted sum of the squared distance
between Pi, μ, λ and P†

i , μ
†, λ†, and is convex in Pi, μ, λ.

Consider the following problem

(P2) minimize{Pi}i∈V ,μ,λ
L fμ†,λ†(μ, λ)+ rP†

i ,μ
†,λ†({Pi}i∈V , μ, λ)

subject to (8b)−−(8d),

and (15) ∀i ∈ V, (16) ∀(i, j) ∈ E,

where L fμ†,λ† is defined in (10) and rP†
i ,μ

†,λ† is defined in

(17). If the point ({P†
i }i∈V , μ†, λ†) is itself a solution to (P2),

then we call it optimal. The problem (P2) has a quadratic
and convex objective function with LMI constraints, and it is
a standard semi-definite programming (SDP) problem which
can be efficiently solved.

The convex subproblem solved at the k-th iteration of
Algorithm 1 is precisely (P2) with the choice (P†

i , μ
†, λ†) =

(P(k−1)
i , μ(k−1), λ(k−1)). A fixed point of Algorithm 1 is there-

fore an optimal point in the sense defined above. Under some
mild assumptions, we show next that any solution of (P1) is
a fixed point. We also show that P(k)

i , μ(k), λ(k) generated by
Algorithm 1 converge to a fixed point.

Proposition 1 (Convergence of Algorithm 1): Suppose that
there is a compact subset D of the feasible set of (P1)
such that cλ ≥ 1+2 ln μ

λ3 for all ({Pi}i∈V , μ, λ) ∈ D. Let
({P∗}i∈V , μ∗, λ∗) ∈ D be a solution of (P1), then it is
a fixed point. In addition, if Algorithm 1 generates the
sequence (P(k)

i , μ(k), λ(k)) ∈ D for all k ∈ N, then the
associated τ (k) monotonically decrease and the sequence
({P(k)

i }i∈V , μ(k), λ(k)) converges to a fixed point when k
approaches infinity.

Proof: For each k ∈ N, denote g∗({Pi}i∈V , μ, λ) :=
L fμ∗,λ∗(μ, λ) + rP∗i ,μ∗,λ∗({Pi}i∈V , μ, λ) and

e∗({Pi}i∈V , μ, λ) := g∗({Pi}i∈V , μ, λ) − ln μ
λ

. Computing
the Hessian of eP∗i ,μ∗,λ∗ , it is found that

H e∗ =
⎛

⎜⎝
cμ + 1

μ2λ

1
μλ2 0

1
μλ2 cλ − 2 ln μ

λ3 0
0 0 cPI

⎞

⎟⎠.

Since cμ, cP ≥ 0 and cλ ≥ 1+2 ln μ

λ3 , H e∗ � 0 so the func-
tion e∗ is convex in D. In addition, the value of e∗ and the
gradient of e∗ at ({P∗i }i∈V , μ∗, λ∗) are found to be 0, which
implies that the minimum of e∗ in D is 0 and the opti-
mizer is ({P∗i }i∈V , μ∗, λ∗). In other words, ln μ∗

λ∗ ≤ ln μ
λ
≤

g∗({Pi}i∈V , μ, λ), where the first inequality comes from the
fact that ({P∗}i∈V , μ∗, λ∗) is a solution of (P1). Because both
equalities above hold iff ({P}i∈V , μ, λ) = ({P∗}i∈V , μ∗, λ∗),
we conclude that ({P∗}i∈V , μ∗, λ∗) is a fixed point.

To show that the sequence τ (k) is monotonically decreas-
ing, we use the shorthand notation that g(k)({Pi}i∈V , μ, λ) :=
L fμ(k),λ(k) (μ, λ)+ r

P(k)
i ,μ(k),λ(k) ({Pi}i∈V , μ, λ). We have

τ (k+1) = ln μ(k+1)

λ(k+1)
≤ g(k)({P(k+1)

i }i∈V , μ(k+1), λ(k+1))

≤ g(k)({P(k)
i }i∈V , μ(k), λ(k)) = ln μ(k)

λ(k)
= τ (k)

where the first inequality comes from similar reasoning
as above and the second inequality comes from the fact
that ({P(k+1)

i }i∈V , μ(k+1), λ(k+1)) is the minimizer of g(k).
Hence the sequence τ (k) is monotonically decreasing. Lastly,
the convergence to a fixed point is concluded by appeal-
ing to [22, Th. 3.1] and realizing the fact that τ (k) is
monotonic.

We conclude here with some remarks regarding
Proposition 1. Firstly, the assumption that cλ ≥ 1+2 ln μ

λ3

over D imposes constraints on D and hence only local
convergence is guaranteed for Algorithm 1. In practice,
we use a sufficiently large parameter cλ in order for
(P(k)

i , μ(k), λ(k)) ∈ D for all k ∈ N. The limitation of
local convergence is caused by the nonconvexity of (P1).
Meanwhile, Proposition 1 guarantees the convergence of
Algorithm 1 to a fixed point which is only a necessary
condition of being an optimizer of (P1). In other words, the
initial guesses P(0)

i , μ(0), λ(0) affect the output of Algorithm 1.
Nevertheless, monotonicity implies that the ADT lower bound
improves by applying Algorithm 1.

V. EXAMPLES AND COMPARISON

Here, we show two examples of continuous-time, graph-
based switched systems and compute the ADT lower bounds
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TABLE I
ADT LOWER BOUNDS FOR SECTION V-B

which guarantee GAS. We use Algorithm 1 for the computa-
tion and compare the result with other alternative approaches.

A. Baseline Approaches and an Approach From
Literature

We start with an introduction to three baseline approaches
for computing ADT lower bounds. These approaches are all
based on Theorem 1 with some particular choices of Pi’s.

a) Naive choice of Pi’s: We choose the matrices Pi’s solving
the Lyapunov equations (9), and then find the maximal λ

and minimal μ satisfying the constraints (7a) and (7b).
b) Greedy choice of maximizing λ: We first choose Pi’s max-

imizing λ subject to (7a). This is a generalized eigenvalue
problem (GEVP) and can be solved using the techniques
in [23], [24]. We then find the minimal μ satisfying the
constraints (7b).

c) Greedy choice of minimizing μ: We first choose Pi’s min-
imizing μ subject to (7b). This is again a GEVP. We then
find the maximal λ satisfying the constraints (7a).

Algorithm 1 is implemented via the platform YALMIP in
MATLAB, and for each iteration the SDP (P2) is solved
using SeDuMi. We run the algorithm until the difference
|τ (k)−τ (k−1)| between consecutive estimates of the ADT lower
bound get below a tolerance ε = 0.001. In each example, we
use the results generated by the three baseline approaches –
which are feasible points to (P1) – as the initial guesses for
our algorithm, and then take the best output.

As an additional comparison, we also use the approach
in [15] for computing ADT lower bounds for both examples.
This approach requires the matrices Ai’s to be diagonalizable
and examines the relation between their matrices of eigen-
vectors. With this information, one finds the maximal ratio
between the total destabilising effects and total stabilizing
effects in a cycle (termed as cycle ratio) over all possible
cycles in G, and then computes an ADT lower bound.

B. Two-Mode, 4-Dimensional Switched System
Consider a two-mode, 4-dimensional switched linear system

of form (4) with matrices

A1 =

⎛

⎜⎜⎜⎝

−15 9 −12 −1
−2 2 −5 −7
13 −5 −17 23
2 2 −15 10

⎞

⎟⎟⎟⎠, A2 =

⎛

⎜⎜⎜⎝

−14 11 −19 6
−10 7 −15 5

3 −1 −7 9
−6 5 −15 8

⎞

⎟⎟⎟⎠.

Both switches, from mode 1 to 2 and from mode 2 to 1,
are allowed. Table I shows the computed values of the ADT
lower bounds, λ, and μ using the approaches in Section V-A.
From the table, we observe that the approaches which greedily
choose Pi’s so that either λ is maximized or μ is mini-
mized do not yield small values for the ADT lower bound.
However, Algorithm 1 is capable of balancing μ and λ so
that the ADT lower bound is further minimized. It is also
significant that Algorithm 1 finds an ADT lower bound that

Fig. 1. Trajectories for the example in Section V-B starting from x(0) =
(4, 3, 2, 1) with dwell time 0.285.

is about 10 times smaller than the value computed with the
cycle ratio approach [15]. To explain this improvement, we
note that, although the cycle ratio approach is not based on
Lyapunov functions, the idea of eigendecomposition can be
interpreted as choosing Lyapunov functions that maximize the
decay rates of all subsystems. Therefore, this approach is sim-
ilar to the greedy approach of maximizing λ (albeit with better
performance because the ratio computation per cycle is less
conservative than employing the uniform parameter μ). In con-
trast, Algorithm 1 is capable of finding a smaller ADT lower
bound by employing the fact that the gain at switches may be
further minimized if the Lyapunov functions for the subsys-
tems are chosen differently. As an illustration, Figure 1 shows
a trajectory converging to the equilibrium implemented with
a dwell time significantly smaller than the ADT lower bound
computed by the cycle ratio approach but slight larger than
the one computed by Algorithm 1.

The last row of Table I displays the total computation
times for each approach. The approach of [15] is the fastest
because it just implements eigendecomposition, followed with
finding the maximal cycle ratio, and hence it has a com-
plexity of O(mn3 + mp + m2 log m), where m = |V| and
p = |E |. Instead, each iteration of Algorithm 1 has a com-
plexity of O(m4.5n6.5 + m2n6.5p2.5 + n3.5p3.5), based on the
complexity of SeDuMi provided in [25] and assuming no
simplification is used for block diagonal LMI. This results
in Algorithm 1 having the largest computation time (albeit we
should also note that we have not optimized the implementa-
tion on MATLAB, and currently rely on the external solver
SeDuMi to solve the SDP optimization). As noted above, this
is because our design puts the emphasis on minimizing the
ADT lower bound, whereas optimality is not in the scope of
the other approaches. We also point out that computation time
is not an issue in the scenarios of application we envision,
where the algorithm is run offline to provide a reference for
the switched system designer. Interestingly, Algorithm 1 ter-
minates after 3 iterations and, after the first iteration, already
achieves τ (1) = 0.4382, which is much smaller than the results
produced by the other approaches. This shows that while other
approaches are fast, they severely underestimate the possible
improvement in the ADT lower bound by optimizing over the
Lyapunov functions.

C. Five-Mode, 3-Dimensional Switched System
Consider a five-mode, 3-dimensional switched system of

form (4) with matrices given by

A1 =
⎛

⎝
−5 1 2
0 −5 1
0 1 −2

⎞

⎠, A2 =
⎛

⎝
−1 3 1
0 −2 0
0 1 −1

⎞

⎠,
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Fig. 2. Switching graph G of Section V-C.

TABLE II
ADT LOWER BOUNDS FOR SECTION V-C

A3 =
⎛

⎝
0 0 3
−2 −1 −3
−1 0 −2

⎞

⎠, A4 =
⎛

⎝
−4 0 −3
2 −2 4
1 0 −1

⎞

⎠,

A5 =
⎛

⎝
−1 0 0
−1 −1 −1
−3 0 −4

⎞

⎠.

The switching graph of this system is shown in Figure 2 and
the computed ADT lower bounds through different approaches
are summarized in Table II. The approach in [15] is not
applicable because the matrix A2 is not diagonalizable. Note
that when the number of modes is large and the switching
graph gets more complex, the greedy approaches produce
lower-quality ADT lower bounds as they compute extremely
conservative values of μ or λ while optimizing the other one.
Algorithm 1 finds an ADT lower bound which is significantly
smaller by balancing μ and λ.

Consistent with the previous example, Algorithm 1 takes a
computation time to find an optimal ADT lower bound longer
than the other approaches for the reasons explained above.
Here, Algorithm 1 takes 7 iterations to converge, with each
iteration taking about 340 ms. After the first iteration, the algo-
rithm already yields τ (1) = 2.597, which is much smaller than
the other approaches.

VI. CONCLUSION

We have studied the problem of finding ADT lower bounds
for switching signals that can guarantee GAS, ISS or iISS
of continuous-time, graph-based switched systems. We for-
mulated the problem as an optimization problem, which
essentially minimizes the ADT lower bound computed over the
parameters given by different choices of Lyapunov functions.
This optimization problem was then solved via an iterative
algorithm with local convergence guarantees. From the demon-
stration of examples and the comparison with previous results,
we found that the ADT lower bounds produced by our algo-
rithm are relatively small and, hence, favorable for practical
switching-signal design purposes. Future research will develop
an analysis of computational complexity that addresses the
SCP initialization and characterizes its convergence rate. We
also plan to explore the combination of cycle ratios with
our technique of optimizing over the matrices that define the

Lyapunov functions by defining constraints on cycles, rather
than on edges, to further improve the ADT lower bound.
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