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Planning Under Non-Rational Perception of
Uncertain Spatial Costs

Aamodh Suresh and Sonia Martínez

Abstract—This work investigates the design of risk-perception-
aware motion-planning strategies that incorporate non-rational
risk associated with uncertain spatial costs. Our proposed method
employs the Cumulative Prospect Theory (CPT) to generate a per-
ceived risk map over a given environment. CPT-like perceived risks
and path-length metrics are then combined to define a cost function
that is compliant with the requirements of asymptotic optimality
of sampling-based motion planners (RRT*). The modeling power
of CPT is illustrated in theory and in simulation, along with a
comparison to other risk perception models like Conditional Value
at Risk (CVaR). Theoretically, we define a notion of expressiveness
for a risk perception model and show that CPT’s is higher than
that of CVaR and expected risk. We then show that this expres-
siveness translates to our path planning setting, where we observe
that a planner equipped with CPT together with a simultaneous
perturbation stochastic approximation (SPSA) method can better
approximate arbitrary paths in an environment. Additionally, we
show in simulation that our planner captures a rich set of meaning-
ful paths, representative of different risk perceptions in a custom
environment. We then compare the performance of our planner
with T-RRT* (a planner for continuous cost spaces) and Risk-
RRT* (a risk-aware planner for dynamic human obstacles) through
simulations in cluttered and dynamic environments respectively,
showing the advantage of our proposed planner.

Index Terms—Behavior-based systems, human-aware motion
planning, human-centered robotics, motion and path planning.

I. INTRODUCTION

MOTIVATION: Autonomous robots from industrial ma-
nipulators to robotic swarms [1]–[3], are less isolated

and increasingly more interactive. Arguably, most environments
where these robots operate, have an associated spatial cost,
which can lead to a robot’s loss or damage. In more complex
scenarios, a decision maker (DM) may be directly involved
with the motion of an autonomous system, such as in robotic
surgery, search and rescue operations, or autonomous car driv-
ing. The risk perceived from these costs or losses could vary
among different DMs. This motivates the consideration of richer
models that are inclusive of non-rational perception of spatial
costs in motion planning. With this goal, we aim to study
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Fig. 1. Environment perception and sampling-based motion planning (chosen
path in white) in risky environments using a) Rational perception using expected
risk, b) DM’s Risk-Averse perception. (a) Motion plan with expected risk. (b)
Motion plan with CPT risks.

how Cumulative Prospect Theory (CPT) [4] can be included
into path planning, and compare its paths with those obtained
from other risk perception models. Fig. 1 shows a preview of
how a non-rational DM’s perception of the same environment
influences the path produced to reach a goal.

Related Work: Traditional risk-aware path planning considers
risk in the form of motion and state uncertainty [5], collision
time [6], or sensing uncertainty [7]. Chance constrained ap-
proaches [8], [9] are used to handle agent and environment
uncertainty in a robust manner, however discrete polyhedral
obstacles are considered which cannot incorporate continuous
spatial costs. Stochastic dynamic programming [10] in used in
dynamic environments to locally integrate planning and estima-
tion without optimality guarantees. Moreover, in all the above
works, how the risks and uncertainties are perceived or rela-
tively weighted has been overlooked. A few recent works [11]
contemplate risk perception models, but assume rational DMs
using coherent risk measures like Conditional Value at Risk
(CVaR) [12]. These measures use axioms that assume rationality
and linearity of the DM’s risk perception [13]. However, research
in Psychophysics [14] and behavioral economics [4] advocate
a fundamental non-linear perception (with surprisingly similar
power laws) among DMs. The latter uses additional non-linear
uncertainty perception to explain the observed non-rational de-
cision making. CPT has been extensively used in engineering
applications like traffic routing [15], network protection [16],
stochastic optimization [17], and safe shipping [18] to model
non-rational decision making. However, CPT is yet to be applied
in motion planning.

Regarding planning algorithms, RRT* [19] has been the basis
for many motion planners due to its asymptotic optimality prop-
erties (guaranteeing consistency) and ability to solve complex
problems [20]. Risk (Risk-RRT* [21]) and uncertainty [22] have
been an ingredient of planning problems involving a human,
but have been mainly modeled in a probabilistic manner [23]
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with discrete obstacles. Although Risk-RRT* considers risk
and asymptotic optimality, it doesn’t incorporate uncertainty or
different risk-perception models. In addition, very few RRT*
planning frameworks model environments as continuous cost
maps (with the exception of T-RRT* [24] and [25]). However,
these works do not explicitly handle cost uncertainty or risk.
In addition, their transition-test mechanism does not always
produce desirable paths quickly (see Section VII).

Contributions: Firstly, we adapt CPT into path planning to
model non-rational perception of spatial cost, capturing a larger
variety of risk perception, and extending the existing literature.
Secondly, we generate consistent (asymptotically optimal) and
desirable (risk perception aware) paths using a sampling-based
(RRT*-based) planning algorithm on the perceived risky en-
vironment. We then compare our planner’s performance with
T-RRT* (continuous cost space planner) and Risk-RRT* (risk-
aware planner) through simulations and show that our proposed
planner can generate better paths in comparison. Finally, we
define the notion of “expressiveness” for a risk perception model
and theoretically show that CPT’s is higher than that of CVaR
and expected risk. In simulations, using SPSA, we illustrate the
above hierarchy by observing that our CPT-based planner can
better approximate arbitrary paths in an environment. We note
here that we merely examine CPT-based perception models for
motion planning and leave the validation of these models for
future work.

II. PRELIMINARIES

Here we describe some basic notations1 used along with a
concise description of CPT (refer to [26] for more details).

CPT is a non-rational decision making model which incorpo-
rates non-linear perception of uncertain costs. Let us suppose a
DM is presented with a set of prospects {ρ1, . . . , ρk, . . . , ρK},
representing potential outcomes and their probabilities, ρk =
{(ρki , pki )}Mi=1. That is, there are M possible outcomes associ-
ated with a prospect k, given by ρki ∈ R≥0, which occurs with
a probability pki .

The outcomes are arranged in a decreasing order ρkM <

ρkM−1 < . . . < ρk1 and
∑M

i=1 p
k
i = 1. The outcomes of prospect

k describe the random cost,2 of choosing prospect k.
We define a utility function, v : R≥0 → R≥0 modeling a

DM’s perceived cost and w : [0, 1] → [0, 1] as the probability
weighting function which represents the DM’s perceived uncer-
tainty. The CPT utility function v takes the form:

v(ρ) = λ · ργ , (1)

where 0 < γ < 1 and λ > 1. Nominal parameters γ = 0.88 and
λ = 2.25 are suggested in [4] for monetary lottery scenarios,
however this may not hold for our application scenario. The
parameter λ represents “cost aversion” with greater values im-
plying stronger aversion indicative of higher perceived costs, as

1We let R denote real numbers, Z≥0 denote the positive integers, and R≥0

the space of non negative real numbers. Also, Rn and � ⊂ Rn denote the
n-dimensional real vector space and the configuration space used for planning.
We use ‖.‖ for the Euclidean norm and ◦ for the composition of two functions,
that is f(g(x)) = f ◦ g(x). We model a tree by an directed graph G = (V,E),
whereV = {1, . . . , T} denotes the set of sampled points (vertices of the graph),
and E ⊂ V × V , denotes the set of edges of the graph.

2CPT has an alternate perception model for random rewards [26] which is not
used here since we are interested in cost perception.

shown in Fig. 2(a). The parameter γ represents “cost sensitivity”
with lower values implying greater indifference towards cost ρ,
which is indicated in Fig. 2(b).

We will use the popular Prelec’s probability weighting func-
tion [26], [27] indicative of perceived uncertainty:

w(p) = e−β(− log p)α , α > 0, β > 0, w(0) = 0. (2)

Fig. 2(c) and 2(d) show changes in uncertainty perception from
varying α and β respectively. With low α and β values, one can
get “uncertainty averse” behavior, withw(p) > p implying more
certainty in unlikely outcomes, as seen in Figures 2(c) and 2(d).
With high α and β values, we get “uncertainty insensitive”
behavior (whenw(p) < p),implying that the DM only considers
more certain outcomes.

A DM under consideration can be categorized by the parame-
tersΘ = {α, β, γ, λ}. Using the non-linear perception functions
v and w, CPT calculates a value function Rc(ρ), indicating the
perceived risk value of the prospectρ. This calculation is detailed
in Section IV for our context.

III. ENVIRONMENT SETUP AND PROBLEM STATEMENT

Here, we consider spatial sources of risk embedded in the �
space. Our starting point is an uncertain cost ρ(x) that aims to
quantify objectively the (negative) consequences of being at a
locationx. In this work, we will assume that the cost at a location
x ∈ � has been characterized as a random variable ρ(x) with
a mean ρμ(x) ∈ R≥0 and standard deviation ρσ(x) ∈ R≥0, for
each x ∈ �.

For more context, we provide two examples explaining the
cost sources for scenarios involving environmental hazards and
moving obstacles; see [28] for more information. First, consider
an emergency drone equipped with a thermal scanner, navigating
in a building which is ablaze. Here, the cost function can be
proportional to the spatial temperature profile. Noisy sensors
result in an uncertain spatial cost valueρ(x)with momentsρμ(x)
and ρσ(x) derived from the sensor’s uncertainty. In another case,
suppose a robot is at x ∈ � and obstacle at y ∈ �. Then, we can
define a spatial cost as the possible damage to the robot 3 which
is inversely proportional to the distance between x and y. That
is, ρ(x) ∝ ‖y − x‖−1. Since the future actions of the obstacle
are unknown and/or the obstacle is localized imprecisely, ρ(x) is
uncertain with moments corresponding to possibly both sensing
and action uncertainty of the obstacle. Above examples are also
explored in simulations in Section VII.

Our notions of “risk” and “risk perception” relate to the way in
which the values of ρ(x) are scaled and averaged in expectation.
That is, risk is a moment of a given uncertain cost ρ(x). In this
work, we use non-rational perception of ρ(x) via CPT to plan
paths by solving:

Problem 1: (CPT environment generator). Given the con-
figuration space � containing the uncertain cost ρ along with
the DM’s CPT parameters Θ, obtain a DM’s (non-rational)
perceived risk Rc consistent with CPT theory.

Problem 2: (Planning with perceived risk). Given a start and
goal points xs and xg , compute a desirable path P from xs to
xg in accordance with the DM’s perceived risk Rc.

3or psychological discomfort for a human, who is treated as an obstacle.
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Fig. 2. Variation of risk aversion, risk sensitivity and uncertainty perception using CPT. (a)-(b) show risk perception with x-axis indicating the associated risk,
ρ, and the y-axis showing the perceived risk, v. The dotted line indicates the line v = ρ. (c)-(d) show uncertainty perception with x-axis indicating probabilities p
and y-axis showing their perception w, with the dotted line depicting w = p.

Problem 3: (CPT planner evaluation). Given a �, and an
uncertain cost ρ along with a drawn path Pd, evaluate the CPT
planner as a model approximator to generate the perceived risk
Rc representing the drawn path Pd.

Now we solve these in Sections IV, V and VI respectively.

IV. RISK PERCEPTION USING CPT

We start by addressing Problem 1. Consider that an un-
certain cost ρ(x) is given, for all x ∈ �, which we approx-
imate via its first two moments, a mean value ρμ(x) ∈ R≥0

and a standard deviation ρσ(x) ∈ R≥0. In what follows, we
discretize4 ρ(x) by considering M ∈ Z≥0 bins, and a set of pos-
sible cost values ρ(x) � {ρ1(x), . . . , ρM (x)}, with ρM (x) <
ρM−1(x) < · · · < ρ1(x) and their corresponding probabilities
p(x) � {p1(x), . . . , pM (x)}, such that

∑M
i=1 pi(x) = 1 ∀x ∈

�. Further, we assume that pi(x1) = pi(x2) ≡ pi, ∀x1, x2 ∈
� and i ∈ {1, . . .,M}. Note that we can do this wlog by dis-
cretizing the continuous RV appropriately, see Algorithm 1. The
function discretize finds yi(x) < yi+1(x) such that P [yi(x) ≤
ρ(x) ≤ yi+1(x)] = pi+1(x)− pi(x).

Now, the expected Risk Re(x) at a point x is

Re(x) �
M∑
i=1

ρi(x)pi(x). (3)

That is, the expected risk Re : �→ R≥0 from (3), corre-
sponds to a standard or rational notion of risk. From CPT [4],
there is a notion of cumulative decision-weight functions
Π := {π1, . . ., πM} used to non-rationally modify the percep-
tion of probabilities pi(x) in a cumulative fashion. Consider

4The discretization of the random cost function is used to be able to use CPT
directly with discrete random variables. However, it is possible to generalize
what follows to the continuous random variable case.

Sj(p1, . . . , pM ) �
∑M

i=j pj and define

πj = w ◦ Sj(p1, . . . , pM )− w ◦ Sj+1(p1, . . . , pM ), (4)

where we employ the weighting function w from (2).
With this, a DM’s CPT risk Rc : �→ R≥0

associated to the configuration space is given by:

Rc(x) �
M∑
j=1

(v ◦ ρj(x))(πj ◦ p(x)). (5)

We note that Re and Rc are differentiable, which is important
for the good behavior of the planner and used for the analysis in
Section V. Pictorially, given an uncertain spatial cost ρ with the
first moment ρμ (Fig. 3(b)) and second moment ρσ (Fig. 3(c))
across an environment, the DM’s risk perception can vary from
being rational (i.e. using expected risk Re) to non-rational (i.e
using CPT risk Rc). By varying Θ, CPT risk Rc can be tuned to
represent risk averse and risk indifferent (Fig. 3(d)) perception,
as well as uncertainty indifferent (Fig. 3(e)) to uncertainty averse
(Fig. 3(f)) perception. Calculating the CPT perceived risk at x
is summarized in Algorithm 1. We note that Algorithm 1 does
not depend on the dimensionality of the � space, but on the
discretization factorM . This environment representation is used
for planning next.

V. SAMPLING-BASED PLANNING USING PERCEIVED RISK

Here, we use the CPT notions to derive new cost functions,
which are used for planning in the DM’s perceived environment
generated in Section IV. In traditional RRT*, optimal planning
is achieved using path length as a metric. In our setting, just
path length is insufficient as it does not capture risk in the con-
figuration space. Thus, we define cost functions that a) take into
account perceived risk and path length of a path, and b) satisfy
the requirements that guarantee the asymptotic performance of
an RRT*-based planner.

Path costs functions Let two points x, y ∈ � be arbitrarily
close. A decrease in risk is a desirable trait, hence it is reasonable
to add an additional term in the cost only if R(y)−R(x) ≥ 0,
indicating an increase in the DM’s perceived risk by traveling
from x to y. Consider the set of paths �(�) � {η : [0, 1] →
� | η(0) = x, η(1) = y}. First, we first define the cost Jc :
�(�) → R≥0 of a path η ∈ �(�). Let {0, t1, t2, . . . , tL = 1}
be a discretization of [0, 1], with t�+1 − t� = Δt, for all �. Then,
a discrete approximation of the cost over η should be:

Jc(η) ≈ Δt

L∑
�=1

max

{
0,

Rc(η(t�+1))−Rc(η(t�))

Δt

}
+δL(η),
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Fig. 3. Variety of risk perception using CPT of a given uncertain environment (a). X and Y axis of (b)-(f) denote the 2D environment of (a). The Z axis indicates
the level of cost in (b), uncertainty in (c) and risk in (d)-(f).

where L(η) denotes the arc-length of the curve η, and δ ∈ R≥0

is a constant encoding an urgency versus risk tradeoff. The
greater the δ value, the greater is the urgency and hence path
length is more heavily weighted whereas, smaller δ indicates
greater prominence towards risk. The appropriate choice of δ is
discussed in Section VII. The above equation can be expressed
as (see [28] for more details):

Jc(η) =

∫ 1

0

max{0, (Rc)′(η(t)) · η′(t)}dt+ δL(η). (6)

From here, the cost of traveling from x to y is given by

Jc(x, y) � min
η∈�(�):η(0)=x,η(1)=y

Jc(η).

Similarly, the path cost using expected risk Je : �(�) →
R≥0 can be obtained by replacing the CPT cost Rc in (6) with
the expected risk Re as calculated in (3).

Proposed Algorithm: Now RRT* can be adapted to our prob-
lem setting. Given �, a number of iterations T and a start point
xs ∈ �, we wish to produce graph G(V,E), which represents a
tree rooted at xs whose nodes V are sample points in� and the

edges E represent the path between the nodes in V . Let Jc
cum :

�→ R≥0 represent the cumulative cost to reach a point x from
the root xs of the tree G(V,E) using the CPT cost metric (6).
Similarly, we defineJe

cum : �→ R≥0 for the expected cost func-
tion Je. The other basic functional components of our algorithm
CPT-RRT* (Algorithm 2) are similar to RRT* and are listed in
the extended version [28]. We note that in order to compute Jc

for each path, we approximate the cost as the sum of costs over its
edges, (x1, x2), and for each edge we compute the cost as the dif-
ferences max{0, Rc(x2)−Rc(x1)}+ δL(x1, x2), where the
latter is just the length of the edge. Then, this approximation
will approach the computation of the real cost in the limit
as the number of samples goes to infinity. The values Rc are
evaluated according to Algorithm 1. Our proposed CPT-RRT*
algorithm augments RRT* as follows: we consider a general
continuous cost profile leading to no obstacle collision checking.
We also consider both path length and CPT costs with the relative
weighting parameter δ for choosing parents and rewiring.

Remark 1: (ER-RRT*). We can obtain the expected risk
version of Algorithm 2 by replacing cost function Jc by Je

and following the same procedure as Algorithm 2.
Lemma 1: (Asymptotic Optimality). Assuming compactness

of � and the choice of γRRT ∗ according to Theorem 38 in [19],
the CPT-RRT* algorithm is asymptotically optimal.

Proof: Please refer to the extended version [28]. �

VI. CPT-PLANNER PARAMETER ADAPTATION

Here, we aim to compare and evaluate the expressive power of
CPT theoretically and experimentally to approximate arbitrary
paths in an environment. This method can be used as a first in-
gredient in a larger scheme aimed at learning the risk perception
of a human decision maker,5 using techniques such as inverse
reinforcement learning (IRL). Since our planning problem is
defined over a continuous state and action space, CPT can be
used for function approximation class in IRL. Then, as is done
in IRL, a larger collection of path examples can be used to learn
the best weighted combination of specific CPT planners in the
class. While certainly of interest, this IRL question is out of
the scope of this work. Here we just study the viability of CPT
planners as a good function approximation class.

Expressiveness of a risk perception model: Let ρ be a random
cost variable and R(ρ) ∈ R≥0 be a risk value function. The
expressiveness of two models can be compared by the range
of the respective risk value functions.

5For offline optimal planning, or in situations where the human does not
update the environment online as new information is found.
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Definition 1: (Expressiveness). Consider two risk perception
models�1 and�2 with corresponding classes of risk value
functions�1 and�2 and respective range spaces�1 and�2. We
say that�1 is more expressive (�) than�2 if �2 ⊆ �1 for
any given positive random variable ρ. That is,�1 ��2 ⇐⇒
{R2(ρ)|R2 ∈ �2} ⊆ {R1(ρ)|R1 ∈ �1}.

Now, we compare expressiveness of CPT, CVaR6 and ER.
Lemma 2: Considering ER, CVaR and CPT with correspond-

ing risk value function classes Re, Rv and Rc defined accord-
ingly, we get: CPT � CVaR � ER.

Proof: First, let us compare ER with CPT and CVaR. The
function class Re has a single function E(ρ) giving the ex-
pected value of ρ, thus the range set of Re is a single-
ton, containing E(ρ). By choosing a function Rv

0 ∈ Rv and
Rc

Θ
∈ Rc with Θ = {1, 1, 1, 1}, we have Rv

0(ρ) = Re(ρ) =

Rc
Θ

. Which implies E(ρ) ∈ {Rv
q (ρ)|q ∈ [0, 1)} and also E(ρ) ∈

{Rc
Θ(ρ)|Rc

Θ ∈ Rc}, thus proving CVar � ER and CPT � ER.
Next let us closely examine CVaR and CPT and then make

the concluding comparison. The range space of Rv is [E(ρ), b],
where b is the worst case outcome of ρ. We also know that

E(κρ) = κE(ρ). From this we can construct κq =
Rv

q (ρ)

E(κρ) which
shows that Rv

q(ρ) = E(κqρ). Consider a subclass of CPT value
functions Rc

Θ∗ where Θ∗ ∈ {Θ|α = 1, β = 1, γ = 1, λ = κq},
we have CPT value Rc

θ = E(κqρ) with θ ∈ Θ∗. From this,
we can say that {Rv

q (ρ)|q ∈ [0, 1)} ⊆ {Rc
θ|θ ∈ Θ∗}⊆ �(Rc).

Putting the two parts together, we get CPT � CVaR � ER,
concluding the proof. �

These arguments imply that risk aversion can equivalently be
modeled as an expected value of the scaled random variable, with
greater scaling implying higher risk aversion. This is captured
in both CPT (λ parameter) and CVaR (q parameter) models.
Additionally, CPT also captures risk and uncertainty sensitivity
which makes it more expressive than CVaR. Additional empir-
ical visualizations of Lemma 2 can be found in [28]. Next, we
will propose a method to evaluate expressiveness in the context
of path planning.

Comparing expressiveness in path planning: Let us suppose
we have an arbitrary example path Pd drawn in an environment.
If the class of CPT planners is expressive enough, we should
be able to find a set of parameters that is able to exactly
mimic this drawn path. Since an arbitrary path Pd belongs to
a very high dimensional space7 and the planner parameters are
typically finite, any amount of tuning may not produce good
approximations. We use the term Ar(P ;Pd) ∈ R≥0 to denote
the area enclosed between the given path Pd and another path
P , thus measuring their closeness. To find the closest path to Pd

we have to evaluate

argmin
PΘ,Θ∈�

Ar(PΘ;Pd), (7)

where PΘ is the path produced by CPT-RRT* with CPT param-
eters Θ, and � is the set of all possible values of Θ. Directly

6CVaR uses a single parameter q ∈ [0, 1] representing the fraction of worst
case outcomes to evaluate expected risk of an uncertain cost ρ. We will use Rv

Q

to denote the perceived risk by CVaR model with q = Q. So a q ≈ 1 considers
the worst case outcome of ρ and a q = 0 considers all the outcomes thus making
Rv

0 = RE .
7A path can be modeled as a curve defined by possibly infinite parameters.

evaluating (7) is computationally not feasible as the set � is
infinite and resides in 4D space.

An alternative to (7) is to use parameter estimation algo-
rithms to determine Θ∗ ∈ � which characterizes the path P ∗
with Ar(PΘ;Pd) as a loss/cost function. We note that neither
Ar(PΘ;Pd) can be computed directly, nor the gradient of Ar
wrt Θ is accessible. This limits the use of standard gradient
descent algorithms to estimate Θ∗. To address this problem, we
use SPSA [29] with Ar(PΘ;Pd) as the loss function to estimate
the parameters Θ∗. The implementation details of SPSA can
be found in [28]. The results are evaluated and compared in
Section VII.

VII. RESULTS AND DISCUSSION

Here we illustrate the results of the solutions to the problem
statement proposed in Sections IV, V, and VI considering a
specific scenario having some risk and uncertainty profiles.

Environment Perception and Planning: We consider a sce-
nario where an agent navigates in a room during a fire emer-
gency. The planner is shown a rough floor map (Fig. 3(a))
with obstacles (which are ablaze) in an environment with a blot
of ink/torn patch, making that region unclear. This results in
a spatial uncertain cost ρ with first moment (ρμ) represented
by cost associated to obstacles and fire source and second
moment (ρσ) represented by the uncertainty associated to the
ink spot/tear in a � = [−10, 10]× [−10, 10] 2D space. The
obstacles (blue objects) are ablaze (light orange ellipse) and
are known within tolerance (dark green borders). The tear/ink
spot (grey ellipse), start (blue dot) and goal (green cross) are
also shown on the map. We use a scaled sum of bi-variate
Gaussian distribution to model the sources of continuous cost
(orange ellipses) with appropriate means and variances to de-
pict the scenario in Fig. 3(a). We utilize bump functions from
differential geometry to create smooth “bumps” depicting the
discrete obstacles (refer Section III in [28] for more description).
Consider the max cost value for the obstacles as ρmax ∈ R≥0 and
let a1, a2, b1, b2 ∈ R≥0 be the inner (blue rectangle) and outer
(dark green borders) measurements of the obstacles from the
center c = (c1, c2) ∈ �. Let x = (x1, x2) ∈ � be a point in the
configuration space with f, g, h being real valued scalar func-
tions given by f(y) = e−

1
y , y ∈ R>0 and f(y) = 0 otherwise,

g(y) = f(y)
f(y)+f(1−y) and h(y) = 1− g(y

2−a2

b2−a2 ). Then, we calcu-
late ρμ(x) by ρμ(x) = ρmaxh(x1 − c1)h(x2 − c2).

This is visualized in Fig. 3(b) usingρmax = 20. To generate the
second moment of cost ρσ , we use a scaled bi-variate Gaussian
distribution with appropriate means and variances to depict the
ink spot/tear in Fig. 3(a). Now we will illustrate the results of
implementing Algorithm 2 in this environment.

CPT-RRT* Simulations: We use a discretization factor M =
20 to generate the costs ρ(x) and their corresponding p(x) from
Section IV. The results of using Algorithm 1 to every point in� is
shown in Fig. 3, riskRc orRe is indicated by color map. Fig. 1(a)
shows a rationally perceived environment using expected risk
Re. Whereas, Fig. 1(b) indicates a non-rational highly risk averse
perception using CPT (Rc) with Θ = {0.74, 2, 0.9, 10} having
a high λ value. Risk indifferent profile (Fig. 3(d)) is generated by
Θ = {0.74, 1, 0.3, 2.25} having a low risk sensitivity γ value.
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Fig. 4. Paths produced by CPT-RRT* under different perception models.
White lines indicate the tree grown from the start position, red line indicates
the optimal path to goal after T = 20000 iterations. Background color map
depicts the CPT costs in (a)-(c) and expected costs in (d)

Similarly, uncertainty indifferent profile (Fig. 3(e)) and uncer-
tainty averse profile (Fig. 3(f)) are generated by fixing α and
having high and low β values respectively. Next, Algorithm 2 is
used to plan a path from the start point to the goal point shown
in Fig. 3(a). We use T = 20 000 iterations for the CPT-RRT*
algorithm with δ = 10−4. The same random seed was used
for consistency. The path planning results are illustrated in
Fig. 4. Fig. 4(a) indicates a circuitous path due to the highly
risk averse perception, whereas Fig. 4(d) indicates a shorter
and more direct path for a rational DM using expected risk.
Increasing the uncertainty sensitivity (lowering β) and reducing
risk aversion (lowering λ) makes the planner avoid the highly
uncertain ink spot/tear in the top-right region and take a more
riskier path in the lower region as shown in Fig. 4(b). By
having a medium risk aversion and lower uncertainty sensitivity
(increasing β), the planner produces a different path as shown in
Fig. 4(c).

Solution quality: Fig. 5(a) and Fig. 5(b) illustrates the em-
pirical convergence and solution quality of the paths produced.
For empirical convergence, we ran CPT-RRT* 100 times with
the same parameters and initial conditions while measuring
the distance between paths produced every 500 iterations, for
80 000 iterations. The results are shown in Fig. 5(a). We see that
initially (< 10 000 iterations) there are changes in the output
path as the space is being explored. After 10 000 iterations
we consistently see minimal path changes indicating that the
algorithm is converging. Then we checked the solution quality
by computing the cost of the output path every 250 iterations as
shown in Fig. 5(b) for 100 trials consisting of 25 000 iteration.
We see that the there is a consistent decrease in path cost and
after 10 000 iterations it starts to plateau, indicating that the
algorithm is close to a high quality (low cost) solution. We
recommend T ≥ 10 000 to achieve smooth and consistent paths
in our setting.

Comparison in narrow and cluttered environments: Here,
we will illustrate and compare our RRT* framework with T-
RRT* [24] in a cluttered environment (100 random objects in
right half) with a long narrow passage (left half) as shown in
Fig 5. The start point xs is on the top right corner and the
goal xg is at the center of narrow passage. Bump functions

similar to previous paragraphs were used to construct a smooth
spatial cost ρ from obstacles. Since T-RRT* does not have
risk/uncertainty perception capabilities, we use the continuous
cost ρ for both algorithms. This allows us to specifically compare
the algorithms’ planning capabilities in the same continuous cost
environment. We used γRRT* = 100 and d = 0.35 in both cases.
From Fig. 5(c) we can see that our algorithm is able to sample
and generate paths in the narrow passage, as well as to avoid
obstacles in a cluttered environment. In comparison, we can
see that T-RRT* employing integral cost (IC) in Fig. 5(d) and
minimum work (MW) in Fig. 5(e) cannot generate paths in the
narrow costly region fast enough irrespective of the TRate used.
Also, T-RRT* paths do not appear to be as smooth as the paths
from our framework, irrespective of the cost (IC or MW) used.
We believe that the reason for the above observations is that
cluttered and high cost environments induce a high failure rate
of the transition test, resulting in a sampling bias and longer
run times for T-RRT* to build the same number of nodes as our
algorithm, especially for high TRate values.

Additional results showing change in paths due from varying δ
and illustration of CPT-RRT* in a 3D environment are presented
in [28] due to space constraints. Overall, our planner’s risk-
perception-aware paths are logically consistent in a given risky
scenario.

Comparison in dynamic environments: Here, we contrast the
performance of CPT-RRT* and Risk-RRT* [21] (a risk aware
planner) in a 10 by 10 environment area with static and moving
obstacles as shown in Fig. 6. To account for risk dynamics,
we will be planning in the space-time domain, and assume
knowledge of the dynamics (or a good estimate) of ρμ(t) and
ρσ(t), which will result in a time-varying perceived risk map
Rc(x, t). We also assume that each edge in the tree will be
traversed in some time Δt. The underlying RRT* parameters
employed by both algorithms were taken to be identical, with
γRRT ∗ = 100 and d = 0.25, while δ = 0.1 for CPT-RRT*. Our
starting point is the same parametric CCR Risk Map [30] as
in Risk-RRT*, which generates a continuous, and time-varying,
cost map based on the pose and velocity of a moving human as
shown in Fig. 6(a) (a snapshot). The human obstacles move back
and forth within the indicated range (gray line), with top two
obstacles moving d units in Δt time, while middle left obstacle
moves at 0.1d units. Since the CCR map does not incorporate
uncertainty, we will use it as the mean cost ρμ(t). We employ
a scaled normal distribution on top of each source of dynamic
risk (moving human) to denote ρσ(t), representing uncertainty
for each source. From ρμ(t) and ρσ(t), we calculate Rc(x, t)
according to Algorithm 1 which is visualized in Fig. 6(c). Note
that with higher risk (moving obstacles as compared to static
or no obstacles), the lighter the color in the map. We compare
our algorithm with Risk-RRT* in two scenarios. At first, for fair
comparison, and since Risk-RRT* does not consider uncertainty
or risk perception models, we use directly the CCR cost map or
ρμ(t) for planning. This corresponds to a rational DM model.
The results are summarized in Fig. 6(b) which show path length
and cumulative risk returned by CPT-RRT* and Risk-RRT*
using the CCR map in 50 trials. We use a risk threshold of 0.1 to
implement Risk-RRT*. In general, we see a lower performance
in Risk-RRT* due to its conservative approach in dealing with
risk. First, since risk is not explicitly accounted for in the cost
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Fig. 5. Solution quality and T-RRT* path comparison. a) Distance between paths every 500 iterations (y-axis) and number of iterations in 1000 (x-axis). b) Cost
of output path (y-axis) every 250 iterations with number of iterations (x-axis) (c)-(e) Paths produced in a cluttered environment using T = 20000 iterations for
CPT-RRT* and 20 000 nodes for T-RRT*.

Fig. 6. Comparison with Risk-RRT*. The CCR Map containing 3 moving humans and a stationary obstacles at initial time is shown in the background.

Fig. 7. Result of using CPT and CVaR to model drawn paths.

function of Risk-RRT* and “risk” is treated as an “obstacle” to
avoid, the resulting path produced by Risk-RRT* is longer, even
though its cost function optimizes path length. The length of the
path from our planner is shorter, with comparable cumulative
risk of the output paths of both planners computed as in (6).
Furthermore, 12 out of the 50 trials in case of Risk-RRT* could
not find a solution within 15 000 iterations. This seems to be a
consequence of a higher sample rejection rate due to the tight
free spaces created by the dynamic obstacles when close to other
objects. This drawback is more pronounced when considering
a risk-averse DM. Fig. 6(c) represents such DM who perceives
that getting close to the dynamic obstacles is highly risky, as
compared to the perception of a rational DM represented by
Fig. 6(a). In this way, the risk values in Fig. 6(c) are in the range
0− 421, which is much higher than those of the CCR Map in
Fig. 6(a) (with ranges 0− 100). Due to higher risk values as
given by this map, the sample rejection in Risk-RRT* is very
high and could not find a feasible path in any of 50 trials, whereas
CPT-RRT* consistently found a path similar to the one shown
in Fig. 6(c) in all of the 50 trials.

CPT planner expressive power evaluation: We now discuss
the proposed framework in Section VI to gauge the expres-
siveness of CPT as a perception model to depict a drawn path
Pd. To implement SPSA, we follow guidelines from [29]. The
exact parameter choice is detailed in [28]. We choose the nom-
inal parameters Θ0 = {0.74, 1, 0.88, 2.25} from [4] for CPT
throughout the simulation, and q0 = 0.5 for the CVaR variant.
We use the same environment as in Fig. 3 for all the simulations.
Four different paths {P 1

d , P
2
d , P

3
d , P

4
d } are drawn by hand on

the expected risk profile (Fig. 4(d)) shown in Fig. 7(a). Path
P 1
d is similar to a path generated with expected risk perception

(Fig. 4(d)). Whereas, path P 4
d and P 2

d are similar to paths
generated with high risk aversion (Fig. 4(a)) and uncertainty
insensitivity (Fig. 4(c)) respectively. Path P 3

d is more chal-
lenging to represent as it shows an initial aversion to risk and
uncertainty and then takes a seemingly costlier turn at the top.
We then use our proposed SPSA approach with a tolerance
κ = 15 and a maximum of 10 SPSA iterations per trial. We
use Tk = 15 000 and δ = 0.01 to implement Algorithm 2 to
determine the loss Ar during each SPSA iteration. For CVaR,
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the planner (Algorithm 2) replaces Rc with Rv in order to use
perceived risk according to CVaR while the rest of the planner
framework remains unchanged. At the end each trial we get the
loss Ar between the returned PΘ and the drawn path P x

d .
We represent the statistics of the returned cost Ar as boxplots

as shown in Fig. 7(b). Each box plot represents the distribu-
tion of 50 returned Ar values after each trial for each path
and perception model. The Y-Axis represents Ar in a base
10 log scale. We calculate a few sample areas: Ar(P 1

d , P
2
d ) =

99.14,Ar(P 2
d , P

3
d ) = 35.20 and Ar(P 3

d , P
4
d ) = 73.41 to give a

quantitative idea of the measure Ar in this scenario to the reader.
The median values for each box plot is indicated on the top row.
The mean value of the distribution is indicated as “stars,” the
black lines above and below the box represent the range, and +
indicates outliers. We observe that from Fig. 7(b), both Path P 1

d
and PathP 4

d were captured equally well with CVar and CPT with
low Ar values. Since both CPT and CVaR are generalizations
of expected risk, paths close (like P 1

d ) to paths generated from
expected risk can be easily mimicked. Similarly, since CPT and
CVaR are designed to capture risk aversion, paths close (like
P 4
d ) to risk averse paths (Fig. 4(a)) can also be easily captured.

However, we see a contrast in performance for path P 2
d and

path P 3
d . CPT, on both occasions, is able to track the drawn

paths reasonably well with low Ar values. Whereas CVaR has
consistently higher (an order of magnitude)Ar values, indicating
the inability to capture the risk perception leading to pathP 2

d and
path P 3

d . This is due to the fact that CPT can handle uncertainty
perception independently from the cost (Fig. 3(e) and Fig. 3(f)).
This ability is needed to capture paths like P 2

d and P 3
d which

is lacking in models like CVaR and expected risk. This result
confirms the theoretical arguments of Lemma 2 and shows richer
modeling capability of CPT.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed a novel adaptation of CPT to model a DM’s
non-rational perception of a risky environment in the context of
path planning. Firstly, using CPT, we provide a tuning knob
to model various risk perceptions of an uncertain spatial cost.
Next, we demonstrate a novel embedding of non-rational risk
perception into a sampling based planner, the CPT-RRT*, to
plan asymptotically optimal paths in perceived environments.
Finally, we theoretically and empirically evaluate CPT as a good
approximator to the risk perception of arbitrary drawn paths by
comparing against CVaR, and show that CPT is a richer model
approximator. Future work will analyze how CPT can be used
to learn the risk profile of a DM using learning frameworks and
conducting user studies.
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