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Abstract— In this paper, we introduce a new notion of
guaranteed privacy for distributed nonconvex optimization
algorithms. In particular, leveraging mixed-monotone inclu-
sion functions, we propose a privacy-preserving mecha-
nism which is based on deterministic, but unknown affine
perturbations of the local objective functions. The design
requires a robust optimization method to characterize the
best accuracy that can be achieved by an optimal perturba-
tion. This is used to guide the refinement of a guaranteed-
private perturbation mechanism that can achieve a quan-
tifiable accuracy via a theoretical upper bound that is inde-
pendent of the chosen optimization algorithm. Finally, sim-
ulation results illustrate the accuracy-privacy trade-off and
that our approach outperforms a benchmark differentially
private distributed optimization algorithm in the literature.

Index Terms— Distributed nonconvex optimization,
Functional perturbations, Guaranteed privacy

I. INTRODUCTION

DATA privacy and protection have become a critical
concern in the management of cyber-physical systems

(CPS) and their public trustworthiness. In such applications,
malicious agents can expand their attack surface by extracting
valuable information from the many physical, control, and
communication components of the system, inflicting damage
on the CPS and its users. Hence, a great effort is being
devoted to design robust, data-secure control strategies for
these systems [1]. Motivated by this, we aim to investigate
an alternative design of privacy-preserving mechanisms, which
can make the quantification of privacy, as well as the associ-
ated performance loss, both tractable and reasonable.

Literature Review. Among the many approaches to data se-
curity, one can distinguish privacy-aware methods that protect
sensitive data from worst-case data breaches by adding random
perturbations to it. However, this high data-resiliency comes at
the cost of high performance loss, which either can be hard to
quantify in practice, or is theoretically bounded by indices that
are too large to be useful. A main approach in the literature
to characterize this trade-off, while preserving privacy, is that
of differential privacy [2].

This method was originally proposed for the protection
of databases of individual records subject to public queries.
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In particular, a system processing sensitive inputs is made
differentially private by randomizing its answers in such a
way that the distribution over published outputs is not too
sensitive to the data provided by any single participant. This
notion has been extended to several areas in machine learning
and regression [3]–[5], control (estimation, verification) [6],
[7], multi-agent systems (consensus, message passing) [8]–
[10], and optimization and games [11]–[13]. In particular, a
notable privacy-preserving mechanism design approach in the
literature is based on the idea of message perturbation, i.e.,
modifying an original non-private algorithm by having agents
perturb the messages/outputs to their neighbors or a central
coordinator with Laplace or Gaussian noise [8]–[10]. This
approach benefits from working with the original objective
functions, however, it suffers from a steady-state accuracy
error, since for fixed design parameters, the algorithm’s output
does not correspond the true optimizer in the absence of
noise [14]. To overcome this shortcoming, encryption-based
privacy-preserving algorithms for some classes of functions
were introduced in; e.g., [15], [16].

Another notable approach to privacy relies on functional
perturbation, with the idea of having agent(s) independently
perturb their objective function(s) in a differentially private
way and then participating in a centralized (or distributed) al-
gorithm [3], [4], [14]. The work in [3] proposed a differentially
private classifier by perturbing the objective function with a
linear finite-dimensional function. However, only the privacy
of the underlying finite-dimensional parameter set—and not
the entire objective functions—is preserved. A sensitivity
analysis-based differentially private algorithm was designed
in [4] by perturbing the Taylor expansion of the cost function,
where, unfortunately, the functional space had to be restricted
to the space of quadratic functions. Similar perturbations were
proposed in [5] but without ensuring the smoothness and
convexity of the perturbed function. In addition, none of [3]–
[5] provided a systematic way to study the effect of added
noise on the global optimizer. To address this issue, [14]
suggested specific functional perturbations such that the dif-
ference between the probabilities of events corresponding to
any pair of data sets is bounded by a function of the distance
between the data sets, at the expense of a trade-off between
the privacy and the accuracy of the mechanism. Further, the
works in [7], [17] provided theoretically proven numerical
methods to quantify differential privacy in high probability in
estimation and verification, respectively. However, differential



privacy requires the slight change of the statistics of the output
of the perturbed function or message if the objective function
or the message sent from one agent changes. This satisfies
privacy only in a probabilistic, and not a guaranteed sense.
To bridge this gap, we aim to investigate an alternative de-
terministic approach to privacy-preserving mechanism design
for distributed optimization, and also to relax the convexity
assumption needed in most of the existing works.

Contributions. We start by introducing a novel notion of
guaranteed privacy. This notion applies to deterministic, but
unknown, functional perturbations of an optimization problem,
and characterizes privacy in terms of how close the ranges of
two sets of functions in a vicinity are. This notion of privacy
is stronger than that of differential privacy in the sense that
it guarantees that the changes of the true function ranges are
small through deterministic, but unknown, functional pertur-
bations. In contrast, functions are perturbed stochastically by a
differential privacy approach. By exploiting the differentiabil-
ity and local Lipschitzness of the objective functions, we pro-
pose a novel perturbation mechanism that relies on the mixed-
monotone inclusion functions of the problem objectives. We
then characterize the best accuracy that can be achieved by an
optimal perturbation, and use this to guide the refinement of a
guaranteed-private perturbation mechanism that can achieve
a quantifiable accuracy via a theoretical upper bound. The
design requires a robust optimization approach, and restricts
privacy to functions in a given vicinity. Simulations are used
to illustrate the level of the tightness of the accuracy upper
bounds, as well as the accuracy-privacy compromise.

II. PRELIMINARIES

In this section, we introduce basic notation, as well as
preliminary concepts and results used in the sequel.

Notation. Rn,Rn×p,Dn,Rn≥0, and Rn>0 denote the n-
dimensional Euclidean space, and the sets of n by p matrices,
diagonal n by n matrices, and nonnegative and positive vectors
in Rn, respectively. Also, 0n×p, In and 0n denote the zero
matrix in Rn×p, the identity matrix in Rn×n, and the zero
vector in Rn, respectively. Further, for D ⊆ Rn, L2(D)
denotes the set of square-integrable measurable functions over
D. Given M ∈ Rn×p, M> represents its transpose, Mij

denotes M ’s entry in the ith row and the jth column, M⊕ ,
max(M,0n×p), M	 = M⊕ −M and |M | , M⊕ + M	.
Finally, for a, b ∈ Rn, a ≤ b means ai ≤ bi,∀i ∈ {1, . . . , n}.

Definition 1 (Hyper-intervals): A (hyper-)interval I ,
[z, z] ⊂ Rn, or an n-dimensional interval, is the set of all
real vectors z ∈ Rn that satisfy z ≤ z ≤ z. Moreover, we call
diam(I) , ‖z − z‖∞ , maxi∈{1,··· ,n} |zi − zi| the diameter
or interval width of I. Finally, IRn denotes the space of all
n-dimensional intervals, i.e., interval vectors.

Definition 2 (V-Adjacent Sets of Functions): Given any
normed vector space (V; ‖ · ‖V) with V ⊆ L2(D), two sets of
functions F , {f1, . . . , fn}, F ′ , {f ′1, . . . , f ′n} ⊂ L2(D) are
called V-adjacent if there exists i0∈ {1, . . . , n} such that

fi0 − f ′i0 ∈ V, and fi = f ′i , for all other i 6= i0 .

III. PROBLEM FORMULATION

Consider a group of N agents communicating over a net-
work. Each agent i∈{1, . . . , N} has a local objective function

f̂i:D → R, where D ⊂ Rn has a nonempty interior. Consider
the problem

min
x∈X0

f̂(x),
∑N
i=1f̂i(x) s. t. G(x)≤0, H(x)=b, x∈X0, (1)

where the mappings G : D → Rm, H : D → Rs are convex,
the vector b ∈ Rs are known to all agents and X0 , [x0, x0]
is assumed to be an interval in Rn. By applying a penalty
method [18, Ch.5], the problem in (1) is equivalent to

min
x∈X0

f(x) ,
∑N
i=1fi(x), (2)

where, we assume the following:
Assumption 1 (Locally Lipschitz & Differentiable Objectives):

Each fi is differentiable, locally Lipschitz in its domain and
only known to agent i. Moreover, upper and lower uniform
bounds for its Jacobian matrix, J

f

i , J
f
i ∈ R1×n are only

known to agent i. Moreover, the problem constraint set X0 is
globally known to each agent1.

Note that we do not restrict any fi, i ∈ {1, . . . , n}, to be
convex, nor twice-continuously differentiable. The problem
objective is to define a mechanism so that agents can solve
(2) via a distributed, private algorithm.

It is known that even if fi and/or its gradient may not be
directly shared among agents, an adversary may be able to
infer it by compounding side information with network com-
munications. This problem has been addressed via the notion
of differential privacy and the design of differentially-private
algorithms, e.g., in [11]–[14], for convex objective functions
(cf. Section I for a thorough review of the relevant work).
Differential privacy applies a random, additive perturbation
to either the algorithm input data or its output, so that the
result becomes very close to that of the same process when
applied to data in a vicinity. Here, our problem data refers to
the problem objective functions, and the novel to-be-designed
privacy mechanism consists of applying deterministic additive
perturbations characterized by intervals—but unknown to the
adversary. By doing so, the approximated range of the objec-
tive functions is also an interval, and privacy can be measured
by how close these intervals are for functions in a vicinity. We
formalize this via a mapping M, as follows, and provide one
such mapping in the next section.

Definition 3 (Guaranteed Privacy): Let M : L2(D)N ×
IRn → IRN be a deterministic interval-valued map from the
function space L2(D)N to the space of intervals in RN . Given
X , [x, x] ∈ IRn and a “privacy gap” ε ∈ R>0, the map
M is ε-guaranteed private with respect to the vicinity V , if
for any two V-adjacent sets of functions F , {fi}Ni=1 and
F ′ , {f ′i}Ni=1 that (at most) differ in their ith0 element and any
interval I ∈ IRN such that M(F,X ) ⊆ I, one has

diam(M(F ′,X )∩I)≤eε‖fi0−f
′
i0
‖Vdiam(M(F,X )). (3)

1Here, the “hard” constraint set X0 is used to model commonly known
constraints that originate from, e.g., reasonable bounds of the problem. We
assume that other local constraints are treated in a “soft” manner, and
have been accounted for as part of the local agents’ objectives. Since local
constraints are typically subject to privacy considerations, sharing them with
others to construct a common constraint set would require an additional
privacy-preserving algorithm. Hard constraints will be addressed in future
work by considering local perturbations to hard constraint sets.



It is worth to reemphasize the difference between the no-
tions of guaranteed privacy (introduced above) and differential
privacy utilized in most of the work in the literature, e.g., [11],
[12], [14]. When differential privacy is considered, the statis-
tics of the output ofM, i.e., the probability of the value ofM
belonging to some set changes only relatively slightly if the
objective function of one agent changes, and the change is in V
(cf. [14, Definition III.1] for more details). On the other hand,
when guaranteed privacy is considered, instead of introducing
randomness to disguise the objective function, we implement
a range perturbation of V-adjacent functions as defined above,
with the end goal of robustifying the optimization problem
(2) in a controlled manner by an ε gap. This being said, note
that our goal is to design a new mechanism (or mapping)
M that preserves the ε-guaranteed privacy of the objective
functions with respect to the problem solution, regardless of
the distributed (nonconvex) optimization algorithm chosen to
arrive at it. In this case, M can be interpreted as a preventive
action on the set of local functions F , which will guarantee the
privacy of any distributed nonconvex optimization algorithm
applied to solve (2). So, our problem can be cast as follows:

Problem 1: Given the program in (2), design a mechanism
M that maintains the privacy of any convergent distributed
nonconvex optimization algorithm in the sense of Definition 3.
In other words,M is an ε-guaranteed privacy-preserving map
with some desired ε>0. Further, the mechanism’s guarantee
on accuracy improves as the level of privacy decreases.

IV. GUARANTEED PRIVACY-PRESERVING FUNCTIONAL
PERTURBATION

In this section, we introduce our proposed strategy to design
a guaranteed privacy-preserving mechanism (or mapping) for
distributed nonconvex optimization. The main idea is to per-
turb the true objective function by deterministic but unknown
linear additive perturbation functions in a distributed manner,
such that the privacy is preserved, regardless of the utilized
optimization algorithm. Then, we show that the level of
privacy can be estimated by computing the over-approximation
of the range of the true and perturbed functions using mixed-
monotone inclusion functions. For the sake of completeness,
we start by briefly recapping the notions of inclusion and
decomposition functions, as well as mixed-monotonicity that
will be used throughout our main results.

Definition 4 (Inclusion Functions): [19, Chapter 2.4] Con-
sider a function g : Rn → RN . The interval function [g] :
IRn→IRN is an inclusion function for g, if

∀X ∈ IRn, g(X ) ⊆ [g](X ),

where g(X ) denotes the true range of g for the domain X .
Proposition 1 (JSS Decomposition): [20, Corollary 2]

Consider a function g : X , [x, x] ∈ IRn → R and suppose
∀x ∈ X , Jg(x) ∈ [Jg, J

g
], where Jg(x) is the gradient of g at

x and Jg, J
g

are known row vectors in R1×n. Then, g can be
decomposed into the sum of an affine mapping, parameterized
by a row vector m ∈ R1×m ∈Mg , and a remainder mapping
h : X → R, as follows:

g(x) = h(x) +mx, ∀x ∈ X , where (4)

Mg,{m∈ R1×m|mj=J
g

j or mj=J
g
j , 1 ≤ j ≤ n}. (5)

Further, h is a Jacobian sign-stable (JSS) [21] mapping in X
by construction, i.e., its Jacobian vector entries have constant
sign over X . Therefore, for each j ∈ {1, . . . , n}, either of the
following hold: Jhj (x) ≥ 0,∀x ∈ X , or Jhj (x) ≤ 0,∀x ∈ X ,
where Jh(x) denotes the Jacobian vector of h at x ∈ X .

Proposition 2 (Mixed-Monotone Inclusion Functions):
[22, Proposition 4] Given the assumptions in Proposition 1,

[g](X )=[hd(x, x)+m⊕x−m	x, hd(x, x)+m⊕x−m	x], (6)

with hd(x1, x2) , h(Bx1 + (In − B)x2), for any ordered
x1, x2 ∈ X , i.e., x1 ≤ x2 or x2 ≤ x1, is an inclusion function
for g. We refer to this inclusion as the mixed-monotone
inclusion function of g. Further, B ∈ Dn is a binary diagonal
matrix that identifies the vertex of the interval [x1, x2] (or
[x2, x1]) that minimizes (or maximizes) the JSS function h in
the case that x1 ≤ x2 (or x2 ≤ x1), and can be computed as:
B=diag(max(sgn(J

g
),01,n)). Finally, hd is tight, i.e.,

hX,hd(x, x)=min
x∈X

h(x), hX,hd(x, x)=max
x∈X

h(x).

From now on, [g](X ) denotes the mixed-monotone inclusion
function of g on X , unless otherwise specified.

A. Guaranteed Privacy-Preserving Mechanism

We are ready to introduce a guaranteed privacy-preserving
map (or mechanism) through the following theorem.

Theorem 1 (Privacy of Functional Perturbation): Let F =
{fi(x)}Ni=1 = {hi(x)+mix}Ni=1 be the JSS decompositions
of the set of functions fi : X0 , [x0, x0] ∈ IRn → R, i ∈
{1, . . . , n}, based on Proposition 1. Suppose Assumption 1
holds, X0 is not a singleton, m̃>i ∈ Rn, and

εi,β(fi, m̃i,X0, δi),(
1

δi
) min
m∈Mfi

ln (
∆hi

X0
+|m̂i|∆+2δi

∆hi

X0
+ |m̂i|∆

), (7)

where ∆ , x0 − x0, m̂i , mi + m̃i, ∆hi

X0
, hi − hi

and Mfi , hi, hi are given in Propositions 1 and 2. Then, the
mapping M : L2(D)N ×X0 → IRN defined as

M(F,X0)=[G](X0), [G] , [[g1]>, . . . , [gN ]>]>,

gi(x) , fi(x) + m̃ix, ∀x ∈ X0,∀i ∈ {1, . . . , n}
(8)

satisfies ε-guaranteed privacy where ε = maxi∈{1,...,n} εi, with
respect to the vicinity:

V,{f ′i∈L2(D)|∀i∈{1,. . . ,N}, |f ′i(x)−fi(x)|≤δi, ∀x ∈ X0}. (9)

We call {m̃i}Ni=1 the “perturbation slopes” and f ′i a function
in the “δi-vicinity” of fi, throughout the paper.

From Theorem 1, the privacy gap εi = β(fi, m̃i,X0, δi)
is a decreasing function of δi, i.e., the smaller ε is, the
harder it will be to distinguish the solution to problems with
functions in a vicinity V . Note that, this result shows that
by making δi large, i.e., by allowing the distance between
the perturbed and the true function become larger, we can
make εi small and thus increase privacy. However, this will
directly impact the distance between the optimizers of the
corresponding problems, which results in a loss of the quality
of the solution—in the sense of being close to the original



one. This intuitively characterizes a trade-off between privacy
and accuracy, which will be discussed later in Theorem 2.

Proof: With a slight abuse of notation, let M(fi,X0)
denote the ith argument of the interval vector M(F,X0). It
follows from (8) and Propositions 1 and 2 that

M(fi,X0)=[hi+m
⊕
i x0−m

	
i x0, hi+m

⊕
i x0−m

	
i x0]⇒

diam(M(fi,X0)) = ∆hi

X0
+ |m̂i|∆.

(10)

On the other hand, (9) implies that for any f ′i in the vicinity of
fi, −δi+fi(x) ≤ f ′i(x) ≤ δi+fi(x),∀x ∈ X0. By adding the
perturbation functions m̃ix and using the JSS decomposition
of fi for an arbitrary mi ∈Mfi , we obtain −δi+hi(x)+mix+
m̃ix ≤ f ′i(x)+m̃ix≤δi+hi(x)+mix+m̃ix, which implies:

M(f ′i ,X0)⊆ [−δi+hi+m̂
⊕
i x0−m̂

	
i x0, δi+hi+m̂

⊕
i x0−m̂

	
i x0].

This, together with the fact diam(M(f ′i ,X0) ∩ I) ≤
diam(M(f ′i ,X0)) for any interval I, results in

diam(M(f ′i ,X0) ∩ I) ≤ 2δi + ∆hi

X0
+ |m̂i|∆. (11)

Finally, it follows from (7) , (10) and (11) that

diam(M(f ′i ,X0) ∩ I)

diam(M(fi,X0))
≤ min
m∈Mfi

2δi + ∆hi

X0
+ |m̂i|∆

∆hi

X0
+ |m̂i|∆

= eαi ,

with αi , εiδi, which implies diam(M(f ′i ,X0) ∩ I) ≤
eεiδidiam(M(fi,X0)). Taking the maximum of both sides on
i returns the results in (3).

B. Tractable Computation of a Functional Perturbation

According to (7), an important factor that affects the privacy
gap, in addition to δi, is the choice of the perturbation slope,
m̃i. In this subsection, we investigate what the best choice for
m̃i is. In the next section, we further discuss how to leverage
the choice of δi so that privacy is still ensured for functions
in a particular vicinity.

It is reasonable to choose the perturbation slopes in such a
way that the difference between the minimum of the perturbed
function and the true function is reduced as much as possible.
An approximated upper bound of this difference can be
obtained by leveraging mixed-monotone inclusion functions
(cf. Proposition 2). Given the common nonlinear terms h, this
bound can be minimized by reducing the difference of the
linear terms for all possible subintervals of the initial interval
domain X0. This results into the following robust optimization:

m̃∗= arg min
m̃∈R1×n,∀[x,x]⊆[x0,x0]

|(m̂⊕−m⊕)x−(m̂	−m	)x|, (12)

where m̂ , m+ m̃. Note that the choice of m̃ through (12) is
not necessarily optimal in the sense that it minimizes the pri-
vacy gap or maximizes the accuracy of the chosen optimization
method to solve the problem. However, given that our goal is
to choose the perturbation slope independently of the chosen
optimization method, it is reasonable to use (12). Moreover,
a significant advantage of designing the perturbation slope
through (12) is that it provides us with a tractable approach
to obtain m̃, which is done via the transformation of (12) into
a linear program (LP), discussed in the following lemma.

Lemma 1 (Tractable Computation of Perturbation Slopes):
The robust optimization problem in (12) can be equivalently
reformulated to the following linear program:

min
ξ∈R2n+1,p1,p2∈R3n

[
0>2n 1

]
ξ

s. t. Λξ ≤ l, p>1 d ≤ 0, p>2 d ≤ 0,

Γ>p1 = ξ, −Γ>p2 = ξ, p1 ≥ 03n, p2 ≥ 03n,

(13)

where d ,
[
x>0 x>0 0>n

]>
, l ,

[
m⊕ m	 0

]>
,

Γ,

0n×n −In 0n

−In 0n×n 0n

In In 0n

,Λ,
 −In 0n×n 0n

0n×n −In 0n

0>n 0>n −1

.
Moreover, m̃∗ = (ξ∗)>

[
In −In 0>n

]>
, (14)

where m̃∗ and ξ∗ are solutions to the robust optimization in
(12) and the LP in (13), respectively.

Proof: First, note that the robust program in (12) can be
equivalently written as follows, with m̂ , m+ m̃:

min{m̃∈R1×n,θ≥0} θ

s.t.− θ≤(m̂⊕−m⊕)x−(m̂	−m	)x≤θ,∀[x, x] ⊆ [x0, x0].

In turn, by considering the change of variables η , m̂⊕ −
m⊕, ρ , m̂	−m	, ξ , [η ρ θ]>, a1 , [x>−x>−1]>, a2 ,
[−x>x> − 1]>, the latter can be reformulated as:

min{ξ}

[
0>2n 1

]
ξ

s. t.Λξ≤l, [a1 a2]>ξ ≤ 02,∀a1, a2 s. t.Γa1≤d,−Γa2≤d,

with c,Γ,Λ, d and l given under (13). Furthermore, by [23,
Section 1.2.1], the above robust LP can be equivalently cast
as the regular LP in (13). Finally, with ξ∗ = [η∗ ρ∗ θ∗]>

being a solution to (13), (ξ∗)>
[
In −In 0>n

]>
= η∗−ρ∗ =

m̂∗⊕ −m⊕ − (m̂∗	 −m	) = m̂∗ −m = m̃∗.

C. Guaranteed Private Mechanism & Accuracy Analysis
In this subsection, and in view of the results of the previ-

ous section, we slightly modify our privacy mechanism, and
investigate its accuracy when applied to a distributed opti-
mization setting. In particular, we show that, regardless of the
distributed and convergent optimization algorithm employed,
a perturbation of the problem objective functions via the map
of the form of Theorem 1 ensures guaranteed privacy, while
remaining reasonably accurate. In other words, we show that
there is a computable and reasonably tight upper bound for
the error caused by perturbations, regardless of the chosen
optimization algorithm. To do so, we require that each agent
i ∈ {1, . . . , N} computes the function gi, where

∀x∈X0, g(x),
∑N
i=1gi(x), gi(x)=fi(x) + m̃ix, (15)

and, as we explain next, m̃i is constrained by a mild condition

that is characterized by m̃∗i = (ξ∗i )>
[
In −In 0>n

]>
.

Moreover, ξ∗i solves (13) after replacing m with mi. After
this process, agents implement any distributed optimization
algorithm with the modified objective functions {gi}Ni=1. Let



Xg=arg min
x∈X0

∑N
i=1gi(x),{x̃∗∈X0 | g(x̃∗) ≤ g(x),∀x∈X0},

Xf=arg min
x∈X0

∑N
i=1fi(x),{x∗∈X0 | f(x∗) ≤ f(x),∀x∈X0},

(16)

denote the set of possible outputs of the distributed algorithm,
and the set of optimizers of the original problem (1), re-
spectively. The following theorem characterizes the accuracy
and privacy of the corresponding perturbation introduced in
Section IV-B, in terms of providing tractable upper bounds
for the errors incurred when using them.

Theorem 2 (Private Mechanism & Its Accuracy):
Consider a group of N agents that aim to collectively
solve the distributed nonconvex optimization (2). Suppose
Assumption 1 holds, denote ∆,x0−x0, and define

δ∗i , max(|m̃∗⊕i x0 − m̃∗	i x0|, |m̃∗⊕i x0 − m̃∗	i x0|), (17)

with m̃∗i given in (15). Then,
(i) For any δi ≥ δ∗i , the family G = {gi}Ni=1 with an
arbitrary perturbation m̃i such that m̃i∆ ≤ δ∗i , belongs
to a δ ≥ maxi δ

∗
i -vicinity of the family F = {fi}Ni=1.

Moreover, the mapping M given in Theorem 1 for this class
of perturbations, is ε = maxi∈{1,...,N} εi-guaranteed private,
where εi = β(fi, m̃i,X0, δi).
(ii) The (worst-case) accuracy error satisfies:

e({fi}Ni=1, {m̃i}Ni=1,X0), max
x∗∈Xf ,x̃∗∈Xg

‖x∗−x̃∗‖∞≤UB, (18)

where the upper bound UB can be computed as:

UB = max
{y∈X0,z∈X0,θ∈R≥0}

θ

s. t.−θ1n≤y−z≤θ1n, m̃i(y−z)≤0, 1≤i≤N,
(19)

and Xf ,Xg are given in (16).
Proof: To prove (i), note that by (15) and [24, Lemma

1], |gi(x)−fi(x)| = m̃ix ∈ [m̃⊕i x0−m̃
	
i x0, m̃

⊕
i x0−m̃

	
i x0],

∀x ∈ X0, implying that |gi(x) − fi(x)| ≤ |m̃i|∆ ≤ δ∗i ,
max(|m̃∗⊕i x0 − m̃∗	i x0|, |m̃∗⊕i x0 − m̃∗	i x0|) ≤ δi, ∀x ∈ X0.
Then, (i) follows from applying Theorem 1 on each fi.

To prove (ii), first note that for any (x∗, x̃∗) ∈ Xf × Xg:

f(x∗) = h(x∗) +mx∗ ≤ f(x̃∗) = f(x̃∗) + m̃x̃∗ − m̃x̃∗

=g(x̃∗)−m̃x̃∗≤g(x∗)−m̃x̃∗=h(x∗)+mx∗+m̃x∗−m̃x̃∗,

where the first and second inequalities follow from the fact that
x∗ and x̃∗ are minimizers of f and g, respectively. Therefore,
given any (x∗, x̃∗) ∈ Xf × Xg and any perturbation slope,
it is necessary that m̃(x∗−x̃∗)≤0. By this and defining θ=
‖x∗−x̃∗‖∞, (18) is equivalent to

e({fi}Ni=1, {m̃i}Ni=1,X0)= max
{y∈Xf ,z∈Xg,θ∈R≥0}

θ

s.t.− θ1n≤y−z≤θ1n, m̃i(y−z)≤0, 1≤i≤N.
(20)

Finally, comparing (19) and (20) indicates that the optimal
value of the former is an upper bound for the optimal value
of the latter since the feasible set of the latter is a subset of
the one for the former, i.e., Xf × Xg ⊆ X0 ×X0.

As a consequence of Theorem 2, since the choice of m̃i is
almost arbitrary (constrained by the mild condition m̃i∆ ≤
δ∗i ), then, it is very unlikely for an adversary to know/guess

Fig. 1: Left: theoretical accuracy error upper bound (UB) computed
according to (19) in Theorem 2 with the perturbation slope m̃∗

obtained by solving the LP in 13, as well as true accuracy error
‖x∗ − x̃∗‖∞ for 50 randomly sampled perturbations m̃ from the
normal distribution N (m̃∗, 1) obtained by applying the nonconvex
distributed optimization algorithms NDO [25], NDGD [26], DNCO
[27], DNCFO [28] and DZOA [29]. Right: comparison of the
guaranteed privacy errors and upper bound with the one from a
differential private distributed optimization (DPDO) [8] algorithm.

m̃i. From this perspective, the process remains private, with
the level of privacy given in (7), while the entire process
remains accurate with an error less than the upper bound
given in (19). Furthermore, m̃i∆ ≤ δ∗i can be interpreted
as a significantly weaker counterpart of the required condi-
tions on the perturbation noise in differential privacy, e.g., in
[14]. It is also worth emphasizing that, though it might be
conservative depending on objective function and constraints,
the computed accuracy (19) provides an upper bound for the
accuracy error regardless of the chosen algorithm. This can
be interpreted as an additional degree of resiliency of the
proposed privacy-preserving mechanism against perturbing the
selected optimization algorithms.

V. ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of our approach, we con-
sidered a nonconvex distributed optimization example from
[25], which is in the from of (2), with n = 1, N = 3
and X0 = [−10, 10], where f1(x) = (x3 − 16x)(x + 2),
f2(x) = (0.5x3 + x2)(x − 4) and f3(x) = (x + 2)2(x − 4),
with the global optimizer x∗ = [2.62 2.62 2.62]>. We
implemented the following five algorithms2: the nonconvex
distributed optimization (NDO) proposed in [25], the noncon-
vex decentralized gradient descent (NDGD) approach in [26],
the distributed nonconvex constrained optimization (DNCO)
method introduced in [27], the distributed nonconvex first-
order optimization (DNCFO) algorithm in [28], and the dis-
tributed zero-order algorithm (DZOA) from [29].

Using Lemma 1, a set of tractable perturbation slopes
was obtained as m̃∗ = {m̃∗1, m̃∗2, m̃∗3} = {0.52, 0.73, 0.38}
through solving the LP in (13). The ε-guaranteed privacy
gaps of the mechanism defined in Theorem 2 when using m̃∗i
are given by {ε∗1, ε∗2, ε∗3} = {0.14, 0.32, 0.68}, respectively.
Further, to study the compromise between privacy and ac-
curacy, we randomly picked 50 samples of m̃ chosen from
the normal distribution N (m̃∗, 1) and applied Theorem 2,
aiming to compute the corresponding ε = max{i=1,...,3} εi and

2Similar to [25], the communication networks for two consecutive time
slots are chosen to be the following two graph combinations: (1 ↔ 2, 2 ↔
3), (1 ↔ 2, 1 ↔ 3) or (1 ↔ 2, 1 ↔ 3), (1 ↔ 2, 2 ↔ 3). In other words,
for each two consecutive time slots, either nodes 1 & 2, as well as 2 & 3 are
connected and then it switches to 1 & 2, as well as 1 & 3, or vice versa.



the worst-case accuracy error, i.e., e({fi}3i=1, {m̃i}3i=1,X0)
(cf. (18)), as well as the theoretical error upper bound UB
(cf. (19)) for each sampled m̃. For illustration, in the left
plot in Figure 1, the computed values for the privacy gap
(ε) are sorted in an ascending order along the horizontal axis,
which results in descending (decreasing) corresponding errors,
after algorithms converge. As can be observed, at the highest
privacy (ε = 0.116), we obtain the lowest accuracy (i.e.,
highest accuracy error) which still can be very tightly ap-
proximated with the theoretical upper bound UB = 0.153 for
all the optimization algorithms errors. Moreover, eventually,
when privacy is the lowest (ε = 0.155), all the algorithms
converge to the lowest accuracy error (e = 0.01), which again
can be reasonably over-approximated by the corresponding
theoretical upper bound UB = 0.025. Moreover, as can be
seen, the error upper bound is independent of the chosen
optimization method and is bounding all error sequences,
noting that the different convergence results depend on the type
of nonconvex method employed. Next, to compare our notion
of privacy with a benchmark perturbation-based approach, we
considered the differentially-private distributed optimization
(DPDO) algorithm introduced in [8]. Note that this algorithm
(as well as all others in the literature to our best knowledge),
is only applicable to (strongly) convex objective functions.
To make it applicable to the considered objective function
from [25], we restricted the problem to a subset of the initial
domain, i.e., X ′0 = [1.5, 4] where strong convexity holds. After
applying DPDO, and as can be seen from the right plot in
Figure 1, we observe the following. First, the corresponding
solution error given the DPDO algorithm is more conservative
than the guaranteed privacy-based error upper bound for ε
greater than some small threshold. Second, the guaranteed-
privacy errors are all bounded by the estimated upper bound
(only a subset of them are plotted in the right figure for the
sake of clarity), and this bound decreases consistently to small
values as the privacy gap ε increases. This clearly illustrates
that not only is guaranteed privacy applicable in nonconvex
settings as opposed to differential privacy, but also that the
bound provided by guaranteed privacy is an improvement over
the error bounds provided by DPDO in convex cases.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a novel notion of guaranteed privacy
for a broad class of differentiable locally Lipschitz nonconvex
distributed optimization problems. We showed how this prop-
erty holds for a deterministic type of perturbation mechanisms,
which exploit the Jacobian sign-stability of the problem ob-
jective functions. Furthermore, using robust optimization tech-
niques, a tractable approach was provided to further restrict the
mechanism in a way that allows for the quantification of the
accuracy bounds of the method. In particular, these bounds
were shown to be decreasing with respect to the privacy gap,
as illustrated through simulations. Future work will consider
designing privacy-preserving estimation, verification and re-
source/task allocation algorithms in networked CPS.
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