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Online Optimization and Ambiguity-based Learning
of Distributionally Uncertain Dynamic Systems

Dan Li1, Dariush Fooladivanda1 and Sonia Martı́nez1

Abstract—This paper proposes a novel approach to construct
data-driven online solutions to optimization problems (P) subject
to a class of distributionally uncertain dynamical systems. The
introduced framework allows for the simultaneous learning of
distributional system uncertainty via a parameterized, control-
dependent ambiguity set using a finite historical data set, and its
use to make online decisions with probabilistic regret function
bounds. Leveraging the merits of Machine Learning, the main
technical approach relies on the theory of Distributional Robust
Optimization (DRO), to hedge against uncertainty and provide
less conservative results than standard Robust Optimization
approaches. Starting from recent results that describe ambiguity
sets via parameterized, and control-dependent empirical distri-
butions as well as ambiguity radii, we first present a tractable
reformulation of the corresponding optimization problem while
maintaining the probabilistic guarantees. We then specialize
these problems to the cases of 1) optimal one-stage control of
distributionally uncertain nonlinear systems, and 2) resource
allocation under distributional uncertainty. A novelty of this work
is that it extends DRO to online optimization problems subject to
a distributionally uncertain dynamical system constraint, handled
via a control-dependent ambiguity set that leads to online-
tractable optimization with probabilistic guarantees on regret
bounds. Further, we introduce an online version of the Nesterov’s
accelerated-gradient algorithm, and analyze its performance to
solve this class of problems via dissipativity theory.

I. INTRODUCTION

Online optimization has attracted significant attention from
various fields, including Machine Learning, Information The-
ory, Robotics and Smart Power Systems; see [1]–[3] and
references therein. A basic online optimization setting involves
the minimization of time-varying convex loss functions, result-
ing into Online Convex Programming (OCP). Typically, loss
objectives in OCP are functions of non-stationary stochastic
processes [4], [5]. Regret minimization aims to deal with non-
stationarity by reducing the difference between an optimal
decision made with information in hindsight, and one made as
information is increasingly revealed. Thus, several online algo-
rithms and techniques are aimed at minimizing various types
of regret functions [6], [7]. More recently, and with the aim
of further reducing the cost, regret-based OCP has integrated
prediction models of loss functions [8]–[11]. However, exact
models of evolving loss functions may not be available, while
alternative data-based approximate models may require large
amounts of data that are hard to obtain. This motivates the
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need of developing new learning algorithms for loss functions
that can employ finite data sets, while guaranteeing a precise
performance of the corresponding optimization.

Literature Review. Due to recent advances in Data Sci-
ence and Machine Learning, the question of learning system
models as well as distributional uncertainty from data is
gaining significant attention. From the early work on Sys-
tems Identification [12], Willem’s Behavioral Theory and
fundamental lemma [13], [14] have been recently leveraged
to learn linear, time-invariant system models in predictive
control applications [14]–[18]. The aforementioned works rely
on the use of Hankel system representations of the LTI
system, and may be subject or not to additional uncertainty.
In particular, the work [19] leverages the behavioral theory
to obtain sub-linear regret bounds for the online optimization
of discrete-time unknown but deterministic linear systems.
Other approaches to learn LTI systems from input-output
data employ concentration inequalities and finite samples,
and include, for example, [20], exploiting least squares and
the Ho-Kalman algorithm, [21], using subspace identification
techniques for LTI systems subject to unknown Gaussian
disturbances, and [22], resorting to Lasso-like methods that
exploit the sparse representation of LTI systems.

On the other hand, classical online optimization relies on
Sample Averaging Approximation (SAA) (with bootstrap) to
derive optimal value and/or policy approximations. However,
SAA usually requires large amounts of data to provide good
approximations of the stochastic cost, which leads to non-
robust solutions to unseen data. In contrast, recent develop-
ments on measure-of-concentration results [23] have lead to a
new type of Distributionally Robust Optimization (DRO) [24]–
[26], which aims to bridge this gap. Particularly, the DRO
framework enables finite-sample, performance-guaranteed op-
timization under distributional uncertainty [24], [25], and
paves the way to dealing with the control and estimation of
system dynamics subject to distributional uncertainty. Moti-
vated by this, the works [27], [28] consider the time evolution
of Wasserstein ambiguity sets and their updates under stream-
ing data for estimation. However, the nominal dynamic con-
straints defined in these problems are assumed to be known,
while in practice, these models also need to be identified.
The previous work [29] proposes a method for integrating the
learning of an unknown and nominal parameterized system
dynamics with Wasserstein ambiguity sets. These ambiguity
sets are given by a parameter and control-dependent ambiguity
ball center as well as a corresponding radius. Taking this as
a starting point, and motivated by the direct use of these
ambiguity sets in a type of “distributionally robust control”,
here we further extend this setup in connection with online
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optimization problems. Precisely, what distinguishes this work
from other approaches is the focus on learning the transition
system dynamics itself via control-dependent ambiguity sets.
The control method is derived from an online optimization
method [6], and, therefore, it does not aim to calculate exactly
an optimal control, but to find an approximate solution that
leads to a low instantaneous regret function value w.r.t. stan-
dard, online and regret-based optimization problems. Finally,
this manuscript connects with the topic online optimization
using decision-dependent distributions [30], [31], where the
uncertainty distribution changes with the decision variable. As
these problems are intractable, [30], [31] solve for alternative
stable solutions, or optimal solutions wrt to the distribution
they induce. In addition to this, and while [30], [31] can handle
dynamic systems, a main difference with this work is that a
dynamic system structure that is being learned is not exploited,
which can help reduce uncertainty more effectively.

Statement of Contributions. In this work, we propose a
novel approach to solve a class of online optimization prob-
lems subject to distributionally uncertain dynamical systems.
Our end goal is to produce an online controller that results
in bounded instantaneous regrets with high confidence. Our
proposed framework is unique in that it enables the on-
line learning of the underlying nominal system, maintains
online-problem tractability, and simultaneously provides finite-
sample, probabilistic guarantee bounds on the resulting re-
gret. This is achieved by considering a worst-case-system
formulation that employs novel parameterized and control-
dependent, Wasserstein ambiguity sets. Our learning method
precisely consists of updating this ambiguity set. The proposed
formulation is valid for a wide class of problems, including but
not limited to 1) a class of optimal control problems subject
to distributionally uncertain dynamical system, and 2) online
resource allocation under distributional uncertainty. To do this,
we first obtain tractable problem reformulations for these two
cases, which results in online and non-smooth convex problem
optimizations. For each of these categories, and smoothed-
out versions of these problems, we propose an online control
algorithm dynamics, which extends Nesterov’s accelerated-
gradient method. Adapting dissipativity theory, we prove op-
timal first-order convergence rate for these algorithms under
smoothness and convexity assumptions. This result is crucial to
guarantee that the online controller can provide probabilistic
guarantees on their regret bounds via the control-dependent
ambiguity set. We thus finish our work by quantifying these
dynamic regret bounds, and by explicitly characterizing the
effect of learning parameters with finite historical samples.

II. NOTATIONS

We denote by Rm, Rm≥0, Zm≥0 and Rm×n the m-dimensional
real space, nonnegative orthant, nonnegative integer-orthant
space, and the space of m×n matrices, respectively. The trans-
pose of a column vector x ∈ Rm is x>, and 1m is a shorthand
for (1, · · · , 1)

> ∈ Rm. We index vectors with subscripts, i.e.,
xk ∈ Rm with k ∈ Z≥0, and given x ∈ Rm we denote its ith

component by xi. We denote by ‖x‖ and ‖x‖∞ the 2-norm
and ∞-norm, respectively. The inner product of Rm is given
as 〈x,y〉 := x>y, x,y ∈ Rm; thus, ‖x‖ :=

√
〈x,x〉. The

gradient of a real-valued function ` : Rm → R is denoted as

∇`(x) and ∇x`(x) is the partial derivative w.r.t. x. In what
follows, dom(`) := {x ∈ Rm | − ∞ < `(x) < +∞}.
A function ` : dom(`) → R is M -strongly convex, if
for any y, z ∈ dom(`) there exists g ∈ Rm such that
`(y) ≥ `(z) +g>(y−z) +M‖y−z‖2/2, for some M > 0.
The function ` is convex if M ≥ 0. We call a vector g a
subgradient of ` at z and denote by ∂`(z) the subgradient
set. If ` is differentiable at z, then ∂`(z) = {∇`(z)}.
Finally, the operation ΠU (X ) : X → U projects the set
X ⊆ Rm onto U ⊆ Rm under the Euclidean norm. We write
ΠU (x) := argminz ‖x − z‖2/2 + χU (z), where x ∈ X ,
and χU (z) = 0 if z ∈ U , otherwise +∞. Endow Rn
with the Borel σ-algebra B, and let P(Rn) be the set of
probability measures (or distributions) over (Rn,B). The set
of probability distributions with bounded first moments is
M = {Q ∈ P(Rn) |

∫
Rn ‖x‖dQ < +∞}. We use the

Wasserstein metric [32] to define a distance inM, and the dual
version of the 1-Wasserstein metric dW :M×M→ R≥0, is
defined by dW (Q1,Q2) := supf∈L

∫
f(x)dQ1 −

∫
f(x)dQ2,

where L is the space of all Lipschitz functions with Lipschitz
constant 1. We denote a closed Wasserstein ball of radius ε
(also called an ambiguity set) centered at a distribution P ∈M
by Bε(P) := {Q ∈ M | dW (P,Q) ≤ ε}. The Dirac measure
at x0 ∈ Rn is a distribution in P(Rn) denoted by δ{x0}.
Given A ∈ B, we have δ{x0}(A) = 1, if x0 ∈ A, otherwise
0. A random vector x ∈ Rm with probability distribution Q
is sub-Gaussian if there are positive constants C, v such that
Q(‖x‖ > t) ≤ Ce−vt

2

. Equivalently, a zero-mean random
vector x ∈ Rn is sub-Gaussian if for any a ∈ Rn we have
E
[
exp(a>x)

]
≤ exp(‖a‖2ν2/2) for some ν.

III. PROBLEM STATEMENT, MOTIVATION, AND APPROACH
BASED ON AMBIGUITY SET LEARNING

We start by introducing a class of online optimization prob-
lems, where the objective function is time-varying according
to an unknown dynamical system subject to an unknown dis-
turbance. Consider a dynamical system that evolves according
to unknown stochastic dynamics

xt+1 =f(t,xt,ut) +wt, from a given x0 ∈ Rn, (1)

where ut ∈ U ⊂ Rm is an online decision or control action
at time t, f : R≥0 × Rn × Rm → Rn is a measurable,
but unknown state transition function, and wt ∈ Rn, is an
unknown, random, disturbance vector. Due to the Markov
assumption, xt ∈ Rn can be described by an unknown
transition probability measure Pt|t−1 ∈ P(Rn), conditioned
on the system state and control at time t − 1. Denote by
` : Rm × Rn → R, (u,x) 7→ `(u,x) an a-priori selected,
measurable loss function. Assume that U is compact, and we
are interested in selecting ut ∈ U that minimizes the loss

min
ut∈U

{
EPt+1|t [`(ut,x)] :=

∫
Rn
`(ut,x) Pt+1|t(dx)

}
.

This objective value is inaccessible since the state distribution
Pt+1|t is unknown, and its evolution is highly dependent on
the system, disturbance, and as well as on the decisions taken.
In this work, we aim to propose an effective online optimiza-
tion and learning algorithm which tracks the minimizers of
the time-varying objective function with low regret in high
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probability. Thus, at each time t, we aim to find u := ut that
minimizes the loss in the immediate future at t+ 1

min
u∈U

EPt+1|t [`(u,x)] ,

s. t. x ∼ Pt+1|t, evolves according to (1).
(P)

This problem formulation is similar to a one-stage optimiza-
tion problems with unknown system transitions [33]. The
expectation operator with respect to Pt+1|t is conditional on
the historical realizations x̂k, k ≤ t, the adopted decisions
ûk, k ≤ t − 1, the yet-to-be-learned unknown dynamical
system f , and realizations ŵk, k ≤ t − 1. We will identify
Pt+1|t(dx) ≡ Pt+1(dx|ut,xt = x̂t,xk = x̂k,uk = ûk, k ≤
t−1) which, by the Markovian property, satisfies Pt+1|t(dx) ≡
Pt+1(dx|ut,xt = x̂t). At time t, let u? := u?t denote an
optimizer of Problem (P) and consider the instantaneous regret

Rt := EPt+1|t [`(u,x)]− EPt+1|t [`(u?,x)] ,

which is the loss incurred if the selected u is different from
an optimal decision. Our goal will be to develop a robust
online algorithm which ensures a probabilistic bound on the
regret. That is, with high probability ρ, the regret Rt is upper
bounded by a sum of terms, a first one depending on the initial
condition x0; a second one depending on the instantaneous
variation of the loss of (P); and a third term related to how well
the unknown system f and the uncertainty are characterized;
please see Theorem V.1. While the second and third terms are
inherent to the system, the effect of the second one can be
reduced by considering a predicted loss of the system [11].
In this work, we aim to bound the third term and minimize
it by estimating the distribution Pt+1|t via an ambiguity set
of distributions. We will show that, as historical data are
assimilated over time, this third term asymptotically decays
to zero. This is achieved under the following assumption

Assumption III.1 (Independent and stationary sub-
Gaussian distributions) The vectors wt ∈ Rn, t ∈ Z≥0,
are i.i.d. with wt ∼ Q and zero-mean σ sub-Gaussian1.

Remark III.1 (On sub-Gaussian distributions) Sub-
Gaussian distributions include Gaussian random variables and
all distributions of bounded support.

Example 1 (Vehicle path planning and tracking): A two-
wheeled vehicle moves in an unknown 2D environment.
Assume that an accessible path-planner provides a control
signal for the vehicle to track a desired reference trajectory
under ideal conditions, see Fig. 1. Fig. 2 shows two examples
where, first, the vehicle implements a series of lane changes,
and, second, navigates through a planned circular/loopy route.
Since both the environment and dynamics are uncertain, exact
tracking is rare. Our goal is to learn the real-time road
conditions, and by solving the online problem (P), derive
a control signal that enables path following minimizing the
tracking error with high probability.
Example 2 (Online resource allocation in the stock mar-
ket): An agent aims to achieve a target profit of r0 = 130% in
a highly-fluctuating trading market. Thus, it actively allocates

1That is, for all unit vector v, we have E[eλv>wt ] ≤ eλ
2σ2

/2, ∀λ ∈ R.
Equivalently, Q(‖wt‖ > λ) ≤ e−λ

2/(4σ2), ∀λ.

Fig. 1: A two-wheeled vehicle model with (x, y) ∈ R2 the position of the
center and θ the direction.

Fig. 2: The (gray) planned trajectory and (black) actual system trajectory in
various road zones, with the system state x = (x, y, θ) ∈ R2× [−π, π). The
red region indicates sandy zone while the blue region indicates the slippery
zone. Due to unknown road conditions, the actual system trajectories deviate
from planned trajectories.

wealth to multiple risky assets while trying to balance re-
sources among assets. As asset-prices are uncertain, modeling
the return rate of each asset is specially challenging. To
solve this, an agent can aim to learn the real-time returns
responsively, estimate the distributions of immediate returns,
and then allocate wealth wisely to maximize the expected
profit with high probability. This problem fits in the proposed
formulation, resulting in online, balanced resource allocation
with low regrets.

A. Online Constructions of Ambiguity Sets
Our main approach to obtain a suitable control signal is

based on learning a set of distributions or ambiguity set that
characterizes system uncertainty. More precisely, we employ
the dynamic ambiguity set Pt+1 proposed in [29]. The set
Pt+1 contains a class of distributions, which is, in high
probability, large enough to include the unknown Pt+1|t under
certain conditions. Thus, we can use it to formulate a robust
version of the problem at each time instant t. Such character-
ization enables an online-tractable reformulation of (P) later.
We summarize next the construction of these ambiguity sets
Pt+1. First, we assume the following on the unknown f .

Assumption III.2 (System parametrization) Given p ∈
Z>0, the system f can be expressed as

f(t,x,u) =

p∑
i=1

α?i f
(i)(t,x,u),

where α? := (α?1, . . . , α
?
p)
> ∈ Rp is an unknown parameter,

and f (i) : R≥0 × Rn × Rm → Rn, (t,x,u) 7→ f (i)(t,x,u),
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i ∈ {1, . . . , p} is a set of p linearly independent known basis
functions or predictors chosen a priori.

Now, given arbitrary (α,u), the set Pt+1 is a Wasserstein
ball centered at a parametric-dependent distribution P̂t+1|t for
each t; that is,

Pt+1 := Bε̂(P̂t+1|t) = {Q | dW (Q, P̂t+1|t) ≤ ε̂}.

Here, ε̂ will be a time-varying function ε̂ ≡ ε̂(t, T, β,α,u)
which depends on a number of T measurements, and a
confidence β ∈ (0, 1). More precisely,

P̂t+1|t(α,u) :=
1

T

∑
k∈T

δ{
∑p
i=1 αiξ

(i)
k (α,u)}; (2)

see the footnote2, where T = {t−T, . . . , t}, for t ≥ T + 1. If
α = α?, then

∑p
i=1 αiξ

(i)
k (α,u) ∈ Rn provides an outcome

x
(k)
t+1 := f(t,xt,u) +wk =

∑p
i=1 α

?
i f

(i)(t,xt,u) +wk, for
each k. For a general α ≈ α?, the value

∑p
i=1 αiξ

(i)
k (α,u)

provides “approximated” outcomes x
(k)
t+1, for each k =

1, . . . , T . Then, we claim the probabilistic guarantee of Pt+1

by a selection of the parameter α and ε̂ for any u.

Theorem III.1 (Online probabilistic guarantee [29, Ap-
plication of Theorem 1]) Let Assumptions III.1 and III.2
hold. For a given T ∈ Z>0, historical data {x̂k}k∈T and
{uk}k∈T \{t}, T = {t− T, . . . , t}, we select P̂t+1|t as in (2)
where α is selected in [29, Theorem 2 (Learning of α?)]3.
Then, for given u and a confidence-related value β ∈ (0, 1),
a radius ε̂ := ε̂(t, T, β,α,u) can be chosen such that

Prob
(
Pt+1|t ∈ Pt+1

)
≥ ρ(t). (3)

Here, the left-hand-side expression is a shorthand for the
probability of the event {(x(1)

t+1, . . . ,x
(T )
t+1) ∈ Rn × · · · ×

Rn |Pt+1|t ∈ Bε̂(P̂t+1|t)} and Prob := PTt+1|t denotes the
probability measure defined on the T -fold product of Pt+1|t,
which evaluates the probability that the selection of samples
define an ambiguity ball which contains the true distribution.
In particular, the confidence value is

ρ(t) := (1− β)

(
1− exp

(
− (γ2 −

√
2cγ)T

2
√

2
(
cγ +

√
2c2
))) ,

where c is a data-dependent positive constant and γ >
√

2c
is a user selected parameter. Further, the radius is

ε̂ :=

√
2nMσ2

T
ln(

1

β
) + C1T

−1/max{n,2} + γH(t, T,u), (4)

where M and C1 are positive constants, and

H(t, T,u) :=
1

T

p∑
i=1

∑
k∈T

‖f (i)(k, x̂k,uk)− f (i)(t, x̂t,u)‖,

which bounds the variation of predicted system trajectories.

Idea of the Proof. The probabilistic guarantees (3) are
a consequence of Lemma 1, Theorem 1, Theorem 2

2 ξ
(i)
k (α,u) := f (i)(t, x̂t,u)+ x̂k+1/(α

>1p)− f (i)(k, x̂k,uk), with
x̂t, x̂k+1, x̂k being the state measurements at time t, k+1, k and uk being
the past input at k, k ∈ T .

3In [29, Theorem 2], the value d plays the role of u in this work.

and Eqn. (7) in [29] with Assumptions III.1 and III.2.
Precisely, we achieve this by upper bounding the met-
ric dW (Pt+1|t, P̂t+1|t(α,u)) using dW (Pt+1|t, P̂t+1|t(α

?,u))

plus dW (P̂t+1|t(α
?,u), P̂t+1|t(α,u)). Then, the first dis-

tance is handled via [29, Lemma 1] using standard mea-
sure of concentration results4, contributing to the first two
terms of the radius ε̂ in (4). Next, the second distance
dW (P̂t+1|t(α

?,u), P̂t+1|t(α,u)) can be bounded in terms of
the difference ‖α − α?‖ via [29, Theorem 1], contributing
to the third term in ε̂. Notice that the third term depends on
Assumption III.2 and the selected parameter γ which relies
on the selection of α via [29, Theorem 2 (Learning of α?)].
The confidence value ρ(t) is achieved by Assumption III.1
applying to the same procedure as in [29, Theorem 2], which
essentially bounds ‖α − α?‖∞ in probability. Precisely, by
Assumption III.1, we have Q(‖wt‖∞ > η) ≤ e−η

2/(4σ2),
∀ η, resulting in E

[
‖wt‖l∞

]
≤ 2

l
2−1σll

l
2 +1, ∀ l ∈ Z≥0,

analogous to [34, Lemma 2]. Then, with the proof similar
to [34, Theorem IV.2], we achieve

Prob

(
1

T

∑
k∈T

(‖wk‖∞) ≥ γ

)
≤ exp

(
−γλ+

T
√
2σeλ

2T − 2
√
2σeλ

)
.

By selecting

λ =

{
T

2
√
2σe
− T

2γ
, if γ ≥

√
2σe,

0, if γ <
√
2σe,

we follow the proof [34, Theorem IV.2] to achieve

Prob

(
1

T

∑
k∈T

(‖wk‖∞) ≥ γ

)

≤

{
exp

(
− T (γ2−

√
2σeγ)

2
√

2σe(γ+
√

2σe)

)
, if γ ≥

√
2σe,

1, if γ <
√

2σe.

By bound propagation, we have

Prob (‖α−α?‖∞ ≤ γ) ≥ 1− exp

(
− (γ2 −

√
2cγ)T

2
√
2
(
cγ +

√
2c2
)) ,

with γ >
√

2c and c is selected as in [29, Theorem 2]. Finally,
the combination of all the above considerations complete the
proof. �

Theorem III.1 provides a methodology to construct online
ambiguity sets with guarantees in probability. In general, ρ(t)
is strictly smaller than 1 unless there is a way of making
α(t)→ α?. This is implemented in [29] via an online learning
algorithm which leads to ρ(t) → 1 − β via Eqn. (7) in the
same work. Notice how these constructions are related to
the decision variable u and, in the following, we leverage
the probabilistic characterization Pt+1 := Pt+1(α,u) of the
distribution Pt+1|t for solutions to (P).

IV. A TRACTABLE PROBLEM REFORMULATION AND ITS
SPECIALIZATION TO TWO PROBLEM CLASSES

In this section, we start by describing how to deal with the
unknown Pt+1|t in Problem (P), via ambiguity sets, which

4Lemma 1 in [29] makes use of a stronger Assumption III.1, which requires
wk to be white. However, this can be relaxed to the current assumption by
multiplying the upper bound in the lemma with a constant M > 0 associated
with noise whitening via an appropriate linear transformation.
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results in (P1). By doing this, the solution of (P1) provides
guarantees on the performance of (P). Unfortunately, this
results into an online intractable problem. Thus, we find
a tractable reformulation (P2) which is equivalent to (P1)
under certain conditions. After this, we focus the rest of our
work on two problem sub-classes, which allows us to present
and analyze the online algorithms for these problems in the
following section. Formally, let us consider

min
u∈U

sup
Q∈Pt+1(α,u)

EQ [`(u,x)] , (P1)

where, for a fixed α := αt and u := ut ∈ U , it holds that
Pt+1|t ∈ Pt+1(α,u) with high probability. This results in

Prob

(
EPt+1|t [`(u,x)] ≤ sup

Q∈Pt+1

EQ [`(u,x)]

)
≥ ρ(t).

Observe that, the probability measure Prob and the bound
ρ(t) coincides with that in (3) and notice how the value ρ(t)
changes for various data-set sizes T in Theorem III.1.

The solution u and the objective value of (P1) ensure that,
when we select u to be the decision for (P), the expected loss
of (P) is no worse than that from (P1) with high probability.
The formulation (P1) still requires expensive online computa-
tions due to its semi-infinite inner optimization problem. Thus,
we propose an equivalent reformulation of (P1) for a class of
loss functions as in the following assumption.

Assumption IV.1 (Lipschitz loss functions) Consider the
loss function ` : Rm × Rn → R, (u,x) 7→ `(u,x). There
exists a Lipschitz function L : Rm → R≥0 such that for each
u ∈ Rm, it holds that ‖`(u,x) − `(u,y)‖ ≤ L(u)‖x − y‖
for any x,y ∈ Rn.

With this, we obtain the following upper bound:

Lemma IV.1 (An upper bound of (P1)) Let Assumption IV.1
hold. Then, for each u, α, β, T and t, we have

sup
Q∈Pt+1(α,u)

EQ [`(u,x)]

≤ EP̂t+1|t(α,u) [`(u,x)] + ε̂(t, T, β,α,u)L(u),

where the empirical distribution P̂t+1|t(α,u) and scalar
ε̂(t, T, β,α,u) are described as in Section III-A.

Hereafter, see the appendix for all proofs.
Next, we claim that the upper bound in Lemma IV.1 is tight

if the following assumption holds.

Assumption IV.2 (Convex and gradient-accessible func-
tions) The loss function ` is convex in x for each u. Further,
for each time t with given u(= ut) ∈ U and α(= αt) ∈ Rp,
there is a system prediction

∑p
i=1 αiξ

(i)
k (α,u) for some

k ∈ T such that ∇x` exists and L(u) is equal to ‖∇x`‖
at (u,

∑p
i=1 αiξ

(i)
k (α,u)).

The above statement enables the following theorem.

Theorem IV.1 (Equivalent reformulation of (P1)) Let
Assumptions IV.1 and IV.2 hold. Let Ξt+1 denote the support of
the distribution Pt+1|t. Then, if Ξt+1 = Rn, (P1) is equivalent
to the following problem

min
u∈U

EP̂t+1|t(α,u) [`(u,x)] + ε̂(t, T, β,α,u)L(u). (P2)

Remark IV.1 (Effects of Assumptions IV.1 and IV.2) We
note that Assumption IV.1 on the Lipschitz requirement of loss
function is mild. In fact, many engineering problems take state
values in a compact set, which then only requires the loss ` to
be continuous. Assumption IV.2 essentially requires accessible
partial gradients (in x) of loss functions `. For simple loss
functions `, e.g. linear, quadratic, etc, its partial gradient can
be readily evaluated. Notice that when Assumption IV.2 fails,
Problem (P2) still serves as a relaxation problem of (P1),
providing a solution with a valid upper bound.

Notice that the tractability of solutions to (P2) now depend
on: 1) the choice of the loss function ` and the associated
Lipschitz function L, and 2) the decision space U . To be able to
further analyze (P2) and further evaluate Assumption IV.2 on
gradient-accessible functions, we will impose further structure
on the system as follows:

Assumption IV.3 (Locally Lipschitz, control-affine system
and basis functions) The system f is locally Lipschitz in
(t,x,u) and affine in u, i.e.,

f(t,x,u) := f1(t,x) + f2(t,x)u,

for some unknown f1 : R≥0 × Rn → Rn, f2 : R≥0 × Rn →
Rn×m, u ∈ U and t ∈ Z≥0. Similarly, for each i ∈ {1, . . . , p},
the basis function f (i) is selected to be

f (i)(t,x,u) := f
(i)
1 (t,x) + f

(i)
2 (t,x)u,

for some known locally Lipschitz functions f (i)
1 and f (i)

2 .

Assumption IV.4 (Convex decision oracle) The set U is
convex and compact. Furthermore, the projection operation of
u ∈ Rm onto U , ΠU (u), admits O(1) computation complexity.

For simplicity of the discussion, we rewrite (P2) as

min
u∈U

G(t,u) := G(t,u|`, L, T, β,α, P̂t+1|t, ε̂),

where G represents the objective function of (P2), depending
on variables `, L, β, α, and Pt+1, which are kept fixed in
the optimization. Then, Assumption IV.3 allows an explicit
expression of G w.r.t. u := ut and Assumption IV.4 charac-
terizes the convex feasible set of (P2). Note that G(t,u) is
locally Lipschitz in t.5

In the following, we consider two classes of general prob-
lems in the form of (P2): 1) an optimal control problem under
the uncertainty; 2) an online resource allocation problem with
a switch. These problems leverage the probabilistic character-
ization of the system and common loss functions `. Then, we
propose an online algorithm to achieve tractable solutions with
a probabilistic regret bound in the next section.
Problem 1: (Optimal control under uncertainty) We con-
sider a problem in form (P), where the system is unknown
and is to be optimally controlled. In particular, we employ the
following separable loss function

`(u,x) := `1(u) + `2(x), `1 : Rm → R, `2 : Rn → R,

with `1 the cost for the immediate control and `2 the optimal
cost-to-go function. We assume that both `1 and `2 are convex,

5This can be verified by the local Lipschitz condition on f (i), `, and finite
composition of local Lipschitz functions are locally Lipschitz.
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and in addition, `2 is Lipschitz continuous with a constant
Lip(`2) ∈ R≥0, resulting in L(u) ≡ Lip(`2). Then, by
selecting the ambiguity radius ε̂ and center P̂t+1|t of Pt+1

as in Section III-A, the objective function of (P2) becomes

G(t,u) = `1(u) +
1

T

∑
k∈T

`2(pk,t)

+ Lip(`2)ε+
γ Lip(`2)

T

p∑
i=1

∑
k∈T

‖H(i)
k ‖,

where pk,t, H
(i)
k ∈ Rn are affine in u, for each i, k, as

pk,t :=

p∑
i=1

αi

(
f

(i)
1 (t, x̂t)− f (i)(k, x̂k,uk)

)
+ x̂k+1 +

(
p∑
i=1

αif
(i)
2 (t, x̂t)

)
u,

H
(i)
k (u) := f (i)(k, x̂k,uk)− f (i)

1 (t, x̂t)− f (i)
2 (t, x̂t)u,

and parameters α ∈ Rp, ε ∈ R≥0 and γ ∈ R≥0 are selected
as in [29, Section IV]. Intuitively, pk,t is the kth projected
outcome of the random variable xt+1 and H(i)

k quantifies
the variation of predictor f (i) with respect to its previous
kth value. Notice that the objective function G is convex
in u and therefore online problems (P2) are tractable. In
addition, if `2 has a constant gradient almost everywhere, then
Assumption IV.2 on accessible gradients holds and (P2) is
equivalent to (P1).
Problem 2: (Online resource allocation) We consider an
online resource allocation problem with a switch, where a de-
cision maker aims to make online resource allocation decisions
in an uncertain environment. This problem is in form (P) and
its objective is

`(u,x) = max{0, 1− 〈u, φ(x)〉}, φ : Rn → Rm,

where φ is an affine feature map selected in advance. The deci-
sion maker updates the decision u online when 〈u, φ(x)〉 < 1,
otherwise switches off. Notice that this type of objective func-
tions appears in many classification problems. In particular, we
assume that the system f is independent from the allocation
variable, i.e., f2 ≡ 0. See Section VI-B for a more explicit
problem formulation involving resource allocation with an
assignment switch.

Then, problem (P2) has the objective function

G(t,u) =
1

T

∑
k∈T

max{0, 1− 〈u, φ(pk,t)〉}+ qtL(u),

where time-dependent parameters pk,t ∈ Rn, qt ∈ R are

pk,t = x̂k+1 +

p∑
i=1

αi

(
f

(i)
1 (t, x̂t)− f (i)

1 (k, x̂k)
)
, ∀ k, t,

qt = ε+
γ

T

p∑
i=1

∑
k∈T

‖f (i)
1 (k, x̂k)− f (i)

1 (t, x̂t)‖, ∀ t,

with α ∈ Rp, ε ∈ R≥0 and γ ∈ R≥0 as in [29, Section IV].
We characterize the function L(u) by subgradients of the loss
function `.

Lemma IV.2 (Quantification of L) Consider `(u,x) :=
max{0, 1 − 〈u, φ(x)〉}, where φ(x) is differentiable in x.
Then, the function L(u) is

L(u) = sup
g∈∂x`(u,x), x∈Rn

‖g‖,

where the set ∂x`(u,x) contains all the subgradients of ` at
x, given any u in advance, i.e.,

∂x`(u,x) := h(x,u) · ∂φ
∂x

(x)u,

where

h(x,u) =


−1, if 〈u, φ(x)〉 < 1

0, if 〈u, φ(x)〉 > 1

[−1, 0], otherwise
.

In particular, if φ(x) := Jx for some matrix J ∈ Rm×n,
then L(u) = ‖J>u‖. If x is contained in a compact set X ,
then L(u) = Lip(φ)‖u‖,where Lip(φ) ∈ R≥0 is the Lipschitz
constant of φ on X .

Lemma IV.2 indicates that, given a properly selected feature
mapping φ, the objective G is convex in u and therefore online
problems (P2) are convex and tractable. In addition, if φ is
a linear map almost everywhere, then Assumption IV.2 on
accessible gradients holds and (P2) is equivalent to (P1).

V. ONLINE ALGORITHMS

Online convex problems (P2) are non-smooth due to the
normed regularization terms in G. To achieve fast, online solu-
tions, we propose a two-step procedure. First, we follow [35],
[36] to obtain a smooth version of (P2), called (P2′). Then,
we extend the Nesterov’s accelerated-gradient method [37]—
known to achieve an optimal first-order convergence rate
for smooth and offline convex problems—to solve the prob-
lem (P2′). Finally, we quantify the dynamic regret [4] of online
decisions w.r.t. solutions of (P1) in probability.
Step 1: (Smooth approximation of (P2)) To simplify the
discussion, let us use the generic notation F : U → R
for a convex and potentially non-smooth function, which can
represent any particular component of the objective function
G(t,u) of (P2) at time t.

Definition V.1 (Smoothable function [35]) We call a convex
function F (u) smoothable on U if there exists a > 0 such
that, for every µ > 0, there is a continuously differentiable
convex function Fµ : U → R satisfying
(1) Fµ(u) ≤ F (u) ≤ Fµ(u) + aµ, for all u ∈ U .
(2) There exists b > 0 such that Fµ has a Lipschitz gradient
over U with Lipschitz constant b/µ, i.e.,

‖∇Fµ(u1)−∇Fµ(u2)‖ ≤ b

µ
‖u1 − u2‖, ∀ u1,u2 ∈ U .

To obtain a smooth approximation Fµ of F , we follow the
Moreau proximal approximation technique [35], described as
in the following lemma.

Lemma V.1 (Moreau-Yosida approximation) Given a con-
vex function F : U → R and any µ > 0, let us denote by
∂F (u) the set of subgradients of F at u, respectively. Let
D := supg∈∂F (u),u∈U ‖g‖2 < +∞. Then, F is smoothable
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with parameters (a, b) := (D/2, 1), where the smoothed
version Fµ : U → R is the Moreau approximation:

Fµ(u) := inf
z∈U

{
F (z) +

1

2µ
‖z − u‖2

}
, u ∈ U .

In addition, if F is M -strongly convex with some M > 0,
then Fµ is M/(1 + µM)-strongly convex. And further, the
minimization of F (u) over u ∈ U is equivalent to that of
Fµ(u) over u ∈ U in the sense that the set of minimizers of
two problems are the same.

From the definition of the smoothable function, we know
that: 1) a positive linear combination of smoothable functions
is smoothable6, and 2) the composition of a smoothable
function with a linear transformation is smoothable7. These
properties enable us to smooth each component of G, i.e., `1,
`2, h and ‖·‖, which results in a smooth approximation of (P2)
via the corresponding Gµ as follows

min
u∈U

Gµ(t,u). (P2′)

Note that Gµ is locally Lipschitz and minimizers of (P2′)
are that of (P2). We provide in the following lemma explicit
expressions of (P2′) for the two problem classes.

Lemma V.2 (Examples of (P2′))
Problem 1: Consider the following loss function

`(u,x) :=
1

2
‖u‖2 + Fµ(x), given some µ > 0,

where Fµ : Rn → R is a smoothed `2-norm function8, with
Lip(Fµ) = 1. Then, the objective function Gµ(t,u) is

1

2
‖u‖2 +

1

T

∑
k∈T

Fµ(pk,t) + ε+
γ

T

p∑
i=1

∑
k∈T

Fµ(H
(i)
k ),

where p, H are affine in u, defined as in Section IV.
In addition, we have the smoothing parameter of Gµ(t,u),
(a, b) := ((1 + pγ)/2, µ+ s0 + γ

∑
i si), where

s0 = σmax

( p∑
i=1

αif
(i)
2 (t, x̂t)

)>( p∑
i=1

αif
(i)
2 (t, x̂t)

) ,

6If F1 is smoothable with parameter (a1, b1) and F2 with parame-
ter (a2, b2), then c1F1 + c2F2 is smoothable with parameter (c1a1 +
c2a2, c1b1 + c2b2), for any c1, c2 ≥ 0.

7Let A : U → X be a linear transformation and let b ∈ X . Let ` :
X → R be a smoothable function with parameter (a, b). Then, the function
F : U → R, u 7→ `(Au + b) is smoothable with parameter (a, b‖A‖2),
where ‖A‖ := max‖u‖=1‖Au‖. If X = R, then ‖A‖ is the `∞ norm.

8 The `2-norm function: Consider x ∈ Rn, F : x 7→ ‖x‖, and µ > 0.
Clearly, F is differentiable almost everywhere, except at the origin. Then,

Fµ(x) := min
z∈Rn

{
‖z‖+ 1

2µ
‖z − x‖2

}
,

= min
r≥0

min
‖z‖=r

{
r +

1

2µ

(
r2 − 2z>x+ ‖x‖2

)}
,

= min
r≥0

{
r +

1

2µ

(
r2 − 2r‖x‖+ ‖x‖2

)}
,

=

{
‖x‖2
2µ

, if ‖x‖ ≤ µ,
‖x‖ − µ

2
, otherwise,

with the smoothing parameter (1/2, 1).

with σmax denoting the maximum singular value of the matrix,
and

si = σmax

(
f

(i)
2 (t, x̂t)

>
f

(i)
2 (t, x̂t)

)
, i ∈ {1, . . . , p}.

Problem 2: Let us select the feature map φ to be the identity
map with the dimension m = n, and consider

`(u,x) := max{0, 1− 〈u,x〉}, with L(u) = ‖u‖,

resulting in

Gµ(t,u) =
1

T

∑
k∈T

F S
µ(〈u,pk,t〉) + qtFµ(u),

where µ > 0, parameters p, q are as in Section IV, and
functions F S

µ : R → R and Fµ : Rn → R are the smoothed
switch function9 and `2-norm function8, respectively. Note that
Gµ has the smoothing parameter (a, b) := ((1 + qt)/2, qt +
1/T

∑
k∈T ‖pk,t‖2∞). �

Step 2: (Solution to (P2′) as a dynamical system) To
solve (P2′) online, we propose a dynamical system extend-
ing the Nesterov’s accelerated-gradient method by adapting
gradients of the time-varying objective function. In particular,
let ut, t ∈ Z≥0, be solutions of (P2′) and let us consider the
solution system with some u0 ∈ U and y0 = u0, as

ut+1 = ΠU (yt − εt∇Gµ(t,yt)),

yt+1 = ut+1 + ηt(ut+1 − ut),
(5)

where εt ≤ µ/bt with positive parameters µ and bt := b being
those define Gµ(t,u). We denote by∇Gµ the derivative of Gµ
w.r.t. its second argument and denote by ΠU (y) the projection
of y onto U as in Assumption IV.4 on convex decision oracle.
Note that, the gradient function ∇Gµ can be computed in
closed form for problems of interest, see, e.g., Appendix A for
those of the proposed problems. Further, we select the moment
coefficient ηt ∈ R≥0 as in Appendix B. In the following, we
leverage Appendix B on the stability analysis of the solution
system (5) for a regret bound between online decisions and
optimal solutions of (P1).

9 The Switch function: Consider u ∈ R, F S : u 7→ max{0, 1 − u},
which is differentiable almost everywhere. For a given µ > 0, we compute

F S
µ(u) := min

z∈R

{
max{0, 1− z}+

1

2µ
‖z − u‖2

}
,

= min

{
min
z≤1

1− z +
1

2µ
‖z − u‖2,min

z≥1

1

2µ
‖z − u‖2

}
.

Given that

min
z≤1

1− z +
1

2µ
‖z − u‖2 =

{
1
2µ
‖1− u‖2, if u > 1− µ,

1− u− µ
2
, if u ≤ 1− µ,

and

min
z≥1

1

2µ
‖z − u‖2 =

{
1
2µ
‖1− u‖2, if u < 1,

0, if u ≥ 1,

resulting in

F S
µ(u) :=


1− u− µ

2
, if u ≤ 1− µ,

1
2µ
‖1− u‖2, if 1− µ ≤ u < 1,

0, if u ≥ 1,

with the smoothing parameter (1/2, 1).
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Theorem V.1 (Probabilistic regret bound of (P1)) Given
any t ≥ 2, let us denote by ut and u?t the decision generated
by (5) and an optimal solution which solves the online Prob-
lem (P1), respectively. Consider the dynamic regret to be the
difference of the cost expected to incur if we implement ut
instead of u?t , defined as

Rt := EPt+1|t [`(ut,x)]− EPt+1|t [`(u?t ,x)] .

Then, the regret Rt is bounded in probability as follows

Prob

(
Rt ≤

4Wt

(t+ 2)2
+ TFt + aµ+ 2L(u?t )ε̂

)
≥ ρ(t),

where Wt depends on the system state at time t− T , and Ft
depends on the variation of the optimal objective values in T ,
i.e.,

Ft = max
k∈T

{
|G?k+1 −G?k|

}
+ L̄,

where G?k := G(k,u?k) is the optimal objective value of (P2),
or equivalently that of (P1). Further, L̄ is the variation bound
of G w.r.t. time, and the rest of the parameters are the same
as before. Furthermore, if all historical data are assimilated
for the decision ut, then, we have

lim inf
t→∞

Prob (Rt ≤ TFt + aµ) ≥ 1− β,

with β a given, arbitrary confidence value.

Theorem V.1 quantifies the dynamic regret of online decisions
u w.r.t. solutions to (P1) in high probability. Notice that, the
regret bound is dominated by terms: TFt, aµ and L(u?t )ε̂,
which mainly depend on three factors: the data-driven param-
eters ε, η and µ of the solution system (5), the variation Ft over
optimal objective values, and the parameters T , β, γ and ε̂ that
are related to the system and environment learning. In practice,
a small regret bound is determined by 1) an effective learning
procedure which contributes to small ε̂; 2) a proper selection
of the loss function ` which results in smoothing procedure
with a small parameter aµ; and 3) the problem structure
leading to small variations Ft of the optimal objectives values.
Furthermore, when we use all the historical data for the
objective gradients in the solution system (5), the effect of
system ambiguity learning is negligible asymptotically.
Online Procedure: Our online algorithm is summarized in
the Algorithm 1.

Online Optimization and Learning Algorithm 1 Opal(I)

1: Select {f (i)}i, `, β, U , u0, µ, and t = 1;
2: repeat
3: Update data set I := It;
4: Compute α := αt as in [29];
5: Select P̂t+1|t in (2) and ε̂ := ε̂(t, T, β,α,u) in (4);
6: Run dynamical system (5) for u := ut;
7: Apply u to (P) with the regret guarantee;
8: t← t+ 1;
9: until time t stops.

VI. IMPLEMENTATION

In this section, we apply our algorithm to the introduced
motivating examples, resulting in online-tractable, effective
system learning with guaranteed, regret-bounded performance
in high probability.

A. Optimal control of an uncertain nonlinear system

We consider the two-wheel vehicle driving under various
road conditions, and our goal is to learn one-step prediction
of the system state distribution and leverage for path tracking
under various unknown road zones. In particular, we represent
the two-wheel vehicle as a differential-drive robot subject to
uncertainty [38]:

xt+1 =xt + h cos(θt)d1,t + hw1,t,

yt+1 =yt + h sin(θt)d1,t + hw2,t,

θt+1 =θt − hd2,t + hw3,t,

d1,t =
r

2
(vl,t + vr,t + e1,t),

d2,t =
r

2R
(vl,t − vr,t + e2,t),

(6)

where components of states xt := (xt, yt, θt) ∈ R2 ×
[−π, π) ∼= R × S1 represent vehicle position and orienta-
tion on the 2-D plane. We take the discretization parame-
ter h = 0.01 and assume subGaussian uncertainty wt :=
(w1,t, w2,t, w3,t) ∈ R3 to be a zero-mean, mixture of Gaussian
and Uniform distributions with σ = 0.5. The intermediate vari-
able dt := (d1,t, d2,t) depends on the wheel radius r = 0.15
m, the distance between wheels R = 0.4 m, the controlled left-
right wheel speed ut := (vl,t, vr,t) and an unknown parameter
et := (e1,t, e2,t), which depends on the wheel quality and road
conditions. For simplicity, we assume that the planner adapts
the system (6) with et ≡ (0, 0) and wt ≡ (0, 0, 0), and the
vehicle can move over three types of road zones, the regular
zone with e(1) := (0, 0), the slippery zone with e(2) = (4, 0),
and the sandy zone with e(3) = (−1.2,−0.2), where locations
of these zones are described in Fig. 2.

To adapt the proposed approach, we consider Problem (P)
with the following loss function

`(u, x, y, θ) =
1

20
‖u− uref‖2 +

1

14
√

2
|x− xref|+

1

4
√

2
|y − yref|+ 289

8

(
cos(θ)− cos(θref)

)2
+

289

8

(
sin(θ)− sin(θref)

)2
,

where (uref, xref, yref, θref) are signals generated by the planner,
and we select the parameter µ = 10−4 for components which
are not smooth. In addition, we assume U = [−20, 20]2 and
utilize p = 3 basis functions {f (i)}i in form of (6), with
wt ≡ (0, 0, 0), and

i = 1, e1 = 0, e2 = 0,

i = 2, e1 = 10, e2 = 0,

i = 3, e1 = 0, e2 = 10.

Note that the ground truth parameter α? := (1, 0, 0) in the
regular zone, α? := (0.6, 0.4, 0) in the slippery zone, and
α? := (1.14,−0.12,−0.02) in the sandy zone. At each time
t, we have access to model sets {f (i)}i and as well as the
real-time data set It with size T0 = 100, which corresponds
to the moving time window of order 0.1 second. For the
system learning algorithm, notions of norm and inner product
are those defined on the vector space T (R2 × S) ≡ R3. We
employ our online optimization and learning algorithm for
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Fig. 3: An example of the (gray) planned trajectory and (black) controlled
system trajectory in various road zones, with the system state x = (x, y, θ).
The red region indicates sandy zone while the blue region indicates the
slippery zone. With the implemented control, the vehicle follows the planned
path with low regrets in high probability.

the characterization of the uncertain vehicle states, learning of
the unknown road-condition parameter e, and control towards
planned behaviors in real time. The achieved system behaviors
are demonstrated in Fig 3, contrasted with the case without the
proposed approach, as in Fig. 2. In the following, we analyze
each case separately and notice how the proposed approach
strikes balance between the given planned control uref and the
actual control u which reduces the weighted tracking error in
road uncertainty.

Example (Lane-changing behavior adaptation) In this
scenario, we assume the initial system state x0 = (10, 0, π/2).
Further, the vehicle can access path plan in Fig. 2(a) and as
well as the suggested wheel speed plan as the gray signal in
Fig. 4(a). To demonstrate the learning effect of the algorithm,
we show in Fig. 5 components α1 and α2 of α = (α1, α2, α3),
where the black lines indicate value of the ground truth α?

on the planned trajectory and the gray lines represent the
learned, real-time estimate of α1 and α2 at the actual vehicle
position. Notice that α? is inaccessible in practice, and from
this case study, the proposed approach indeed learns the system
dynamics effectively. See, e.g. [29] for more analysis regarding
to the effect of the learning behavior and ambiguity sets
characterization on the selection of ε and γ.

As the proposed loss function ` measures the weighted
tracking error, the resulting control system trajectory in
Fig. 3(a) already reveals the effectiveness of the method and
as well as the low regrets in probability. On the other hand, be-
cause the system is highly non-linear and uncertain, evaluating
the actual optimal objective value of Problem (P) is difficult.
Therefore, it’s very challenging to evaluate the regret Rt in
practice, even though the its probabilistic bounded is proved.
Here, we provide in Fig. 4(b) the realized loss ` and as well as
the realized objective value of Problem (P2), where the loss `
reveals one possible objective value of (P), and the objective
value of (P2) serves as an upper-bound of that of (P) in high
probability. In addition, notice that the derived (black) control
signal in Fig. 4(a) has undesirable, high-oscillatory behavior.
This is because the chosen loss function ` is only locally
convex in x. When the system disturbances are significant,
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Fig. 4: (a) The (gray) control signal provided by the planner and an example
of the (black) control signal derived from the proposed approach. (b) The
realized loss ` and the achieved objective of (P2).
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Fig. 5: The component α1 and α2 of the real-time parameter α :=
(α1, α2, α3) in the learning procedure.

the proposed approach then revealed certain degradation and
control being oscillatory. Nevertheless, a desirable system
behavior in Fig. 3(a) is achieved.

Example (Circular route tracking) In this scenario, we
consider x0 = (0, 30, 0). We omit the details as the analysis
shares the same spirit as the last lane-changing example.

B. Online resource allocation problem
We consider an online resource allocation problem where

an agent or decision maker aims to 1) achieve at least target
profit under uncertainty, and 2) allocate resources as uni-
formly as possible. To do this, the agent distributes available
resources, e.g., wealth, time, energy or human resources, to
various projects or assets. In particular, for the trading-market
motivating example, let us consider that the agent tries to make
an online allocation u ∈ U of a unit wealth to three assets. At
each time t, the agent receives random return rates xt ∈ R3

≥0

of assets from some unknown and uncertain dynamics

xt+1 = xt + hA(t) + hwt, with some x0 ∈ R3, (7)

where h = 10−3 is a stepsize, the vector A(t) is ran-
domly generated, unknown and piecewise constant, and the
uncertainty vector wt is assumed to be sub-Gaussian with
σ = 0.1. Note that this model can serve to characterize
a wide class of dynamic (linear and nonlinear) systems. In
addition, we assume that the third asset is value preserved,
i.e., the third component of A(t) and wt are zero and x3 ≡ 1.
Over time, an example of the resulting unit return rates x is
demonstrated in Fig. 6. Then, we denote by r0 = 1.3 and
〈u,xt+1〉 the target profit and the predicted instantaneous
profit, respectively. Note that the decision maker aims to
obtain at least a 30% profit and allocate resources online for
this purpose. In particular, the decision maker implements an
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Fig. 6: An example of random returns x = (x1, x2, x3), where returns of
the first two assets x1, x2 ∈ [0,+∞) are highly fluctuating and the third is
value-preserving with return x3 ≡ 1. Without asset allocation, agent does not
achieve the goal profit r0 = 1.3 and has a chance of losing assets.
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Fig. 7: The component α1 and α2 of the real-time parameter α :=
(α1, α2, α3) in learning, where the values α?1 and α?2 are the online-
inaccessible ground truth. Notice the responsive behavior of the proposed
learning algorithm.

allocation online if 〈u,xt+1〉 ≤ r0, otherwise does nothing.
This results in (P) with the loss function

`(u,x) = max{0, 1− 1

r0
〈u,x〉},

and set U a unit simplex. We propose p = 3 basis functions

f (1) = x, f (2) = x+ 0.1he1, f
(3) = x+ 0.1he2,

where e1 = (1, 0, 0)
> and e2 = (0, 1, 0)

>. At each t,
we assume that only historical data are available for online
resource allocations. Applying the proposed probabilistic char-
acterization of xt+1 as in (P1), we equivalently write it as in
form (P2′), where

Gµ(t,u) =
1

T

∑
k∈T

F S
µ(〈u,

pk,t
r0
〉) +

qt
r0
Fµ(u), µ = 0.01,

with functions F S
µ

9 and Fµ
8, and real-time data pk,t and qt

determined as in Problem 2. We claim that Gµ(t,u) has
a time-dependent Lipschitz gradient constant in u given by
Lip(Gµ) = qt/r0 + 1/(r2

0T )
∑
k∈T ‖pk,t‖2∞, and we use

ε := 1/Lip(Gµ) in the solution system (5) to compute the
online decisions.

Fig. 7 shows the real-time evolution α1 and α2 of the
parameter α := (α1, α2, α3), while the behavior of α3 can
be similarly characterized. In these figures, black lines α?1 and
α?2 are determined by the unknown signal A(t) while gray
lines α1 and α2 are those computed as in [29]. Note that α?

represents the unknown dynamics f and they are not accessible
in reality. It can be seen that the proposed method effectively
learns α?.

Fig. 8 demonstrates the online resource allocation obtained
by implementing (5) and the achieved real-time profit 〈u,x〉.
The decision u starts from the uniform allocation u0 =
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Fig. 8: Real-time resource allocation u and profit 〈u,x〉. Notice
how the decision u = (u1, u2, u3) respects constraints and how the
allocation tries to balance the assets when the goal profit r0 is met.
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Fig. 9: The realized loss ` and the achieved objective of (P2).

(1/3, 1/3, 1/3) and is then adjusted to approach the target
profit r0 = 1.3. Once the target is achieved, the agent then
maintains the profit while trying to balance the allocation if
possible. When the return rate x is low/unbalanced, as in
Fig. 6, the agent tries to improve and achieve the target profit
by allocating resources more aggressively. Though did not
appear in the current scenario, in case that the return rate is
high and the target profit value is achieved, the agent focuses
on balancing the allocation while maintaining the profit. If
both the target profit and allocation balance are achieved,
then the agent stops re-allocating resources and monitors the
return rate x until the switch turns on, e.g., when the near
future profit prediction drops below r0 again. In addition,
notice how the target profit was achieved with the proposed
control strategy as demonstrated in Fig. 8, which contrasts
with uniform allocation case as in Fig. 6.

Fig. 9 demonstrates the evaluation of the time-varying loss `
as well as the realized objective value of Problem (P2). Due to
the unknown time-varying distributions Pt|t−1, the evaluation
of the objective values of Problem (P) is intractable, and the
realized loss of (P2) serves as a high-confidence upper bound
of that of(P). Nevertheless, the target profit is achieved with
low regret in high confidence, as revealed in Fig. 8.

VII. CONCLUSIONS

In this paper, we proposed a unified solution framework
for online learning and optimization problems in form of (P).
The proposed method allowed us to learn an unknown and
uncertain dynamic system, while providing a characterization
of the system with online-quantifiable probabilistic guarantees
that certify the performance of online decisions. The approach
provided tractable, online convex version of (P), via a series
of equivalent reformulation techniques. We explicitly demon-
strated the framework via two problem classes conforming
to (P): an optimal control problem under uncertainty and an
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online resource allocation problem. These two problem classes
resulted in explicit, online and non-smooth convex optimiza-
tion problems. We extended Nesterov’s accelerated-gradient
method to an online fashion and provided a solution system
for online decision generation of (P). The quality of the online
decisions were analytically certified via a probabilistic regret
bound, which revealed its relation to the learning parameters
and ambiguity sets. Two motivating examples applying the
proposed framework were empirically tested, demonstrating
the effectiveness of the proposed framework with the bounded
regret guarantees in probability. We leave the relaxation of
assumptions and the comparison of this work with other
methods as the future work.

APPENDIX
A. Computation of the objective gradients

Let `, G and Gµ be those in Lemma V.2 on examples
of (P2′). We now derive ∇Gµ := ∇uGµ(t,u) as follows.
Problem 1 (Optimal control under uncertainty):

∇uGµ(t,u) =

1

µ
u+

1

T

∑
k∈T

∇uFµ(pk,t) +
γ

T

p∑
i=1

∑
k∈T

∇uFµ(H
(i)
k ),

where, for each k ∈ T , the term ∇uFµ(pk,t) is
1
µ

(
p∑
i=1

αif
(i)
2 (t, x̂t)

)>
pk,t, if ‖pk,t‖ ≤ µ,

1
‖pk,t‖

(
p∑
i=1

αif
(i)
2 (t, x̂t)

)>
pk,t, otherwise,

and, for k ∈ T , i ∈ {1, . . . , p}, the term ∇uFµ(H
(i)
k ) is−

1
µ (f

(i)
2 (t, x̂t))

>
H

(i)
k , if ‖H(i)

k ‖ ≤ µ,

− 1

‖H(i)
k ‖

(f
(i)
2 (t, x̂t))

>
H

(i)
k , otherwise .

Problem 2 (Online resource allocation):

∇uGµ(t,u) =
1

T

∑
k∈T

∇uF S
µ(〈u,pk,t〉) + qt∇uFµ(u),

where

∇uFµ(u) :=

{
1
µu, if ‖u‖ ≤ µ,

1
‖u‖u, otherwise,

and, for each k ∈ T , the gradient ∇uF S
µ(〈u,pk,t〉) is

−pk,t, if 〈u,pk,t〉 ≤ 1− µ,
− 1−〈u,pk,t〉

µ pk,t, if 1− µ ≤ 〈u,pk,t〉 < 1,

0, if 〈u,pk,t〉 ≥ 1.

These explicit expressions provide ingredients for the solution
system. With different selections of the norm, the expression
varies accordingly.

B. Stability Analysis of the Solution System
Here, we adapt dissipativity theory to address the per-

formance of the online solution system (5). This part of
the work is an online-algorithmic extension of the existing
Nesterov’s accelerated-gradient method and its convergence
analysis in [39]–[41]. Our extension (5) inherits from the work
in [40], where the difference is that gradient computations

in (5) are from time-varying objective functions in (P2′). To
simplify the discussion, the notation we used in this subsection
is different from that in the main body of the paper. Consider
the online problem, analogous to (P2′), defined as follows

min
x∈X

ft(x), t = 0, 1, 2, . . . (8)

where ft(x) is locally Lipschitz in t with the parameter h(x)
and, at each time t, the objective function ft are mt-strongly
convex and Lt-smooth, with mt ≥ 0 and Lt > 0. The convex
set X ⊂ Rn is analogous to that in Assumption IV.4 on convex
decision oracle. The solution system to (8), analogous to (5),
is

xt+1 = Π(yt − αt∇ft(yt)),
yt+1 = xt+1 + βt+1 (xt+1 − xt),

with some y0 = x0 ∈ X ,
(9)

where αt ≤ 1/Lt and βt is selected iteratively, following

δ−1 = 1, δt+1 :=
1 +

√
1 + 4δ2

t

2
, βt :=

δt−1 − 1

δt
.

Note that δ2
t − δt = δ2

t−1, t = 0, 1, 2, . . .. The projection Π(x)
at each time t is equivalently written as

Π(x) = argmin
z∈Rn

1

2
‖z − x‖2 + αt`(z),

with `(z) = 0 if z ∈ X , otherwise +∞. Note that the
projection operation is a convex problem with the objective
function being strongly convex. Thus, Π(x) is a singleton (the
unique minimizer) and satisfies the optimality condition [42]

x−Π(x) ∈ αt∂`(Π(x)),

where the r.h.s. is the sub-differential set of ` at Π(x).
Equivalently, we write the above condition as

Π(x) = x− αt∂`(Π(x)).

We apply this equivalent representation to the solution sys-
tem (9), resulting in

xt+1 = yt − αt∇ft(yt)− αt∂`(wt),

yt+1 = xt+1 + βt+1 (xt+1 − xt),
wt =xt+1.

(10)

Note that (10) is not an explicit online algorithm, as the
state xt+1 is yet to be determined. However, we leverage
this equivalent reformulation for the convergence analysis of
solutions to (9) to a sequence of optimizers of (8), denoted by
{x?t }. To do this, let zt := (xt−x?t , xt−1−x?t−1) denote the
tracking error vector and represent (10) as the error dynamical
system

zt+1 = Atzt +But ut +Bvt vt,

with z1 = (x1 − x?1, x0 − x?0),
(11)

with the gradient input ut := ∇ft(yt)+∂`(wt), the reference
signal vt := (x?t − x?t−1, x

?
t+1 − x?t ), the matrices

At =

[
1 + βt −βt

1 0

]
, But =

[
−αt

0

]
, Bvt =

[
βt −1
0 0

]
,

and the auxiliary variables

yt − x?t =
[
1 + βt −βt

]
zt +

[
βt 0

]
vt,

wt − x?t =
[
1 0

]
zt+1 +

[
0 1

]
vt.
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We provide the following stability analysis of the system.

Theorem A.1 (Stability of (9)) Consider the solution algo-
rithm (9), or equivalently (10).
(1) For each t ≥ 1, we have the following

ft(xt)− ft(xt+1) ≥ ξt
>X1,t ξt,

ft(x
?
t )− ft(xt+1) ≥ ξt

>X2,t ξt.

Here, ξt := (zt, ut, vt), and

X1,t :=
1

2


mβ2 −mβ2 −β mβ2 0
−mβ2 mβ2 β −mβ2 0
−β β α(2− Lα) −β 0
mβ2 −mβ2 −β mβ2 0
0 0 0 0 0

 ,

X2,t :=
1

2


m(1 + β)2 −η −(1 + β) η 0
−η mβ2 β −mβ2 0

−(1 + β) β α(2− Lα) −β 0
η −mβ2 −β mβ2 0
0 0 0 0 0

 ,

with η = m(1 + β)β and the parameters (m,L, α, β) are a
short-hand notation for (mt, Lt, αt, βt).

(2) Given the horizon parameter T0 ∈ Z>0 with T =
min{t− 1, T0}. Then, for any t ≥ 2, the solution xt from (9)
achieves

ft(xt)− ft(x?t ) ≤
4Gt

(t+ 2)2
+ TFt + TKt

+
4(t− T − 1 + δ0)2

(t+ 2)2
(ft−T (xt−T )− ft−T (x?t−T )).

where the time-dependent parameters Gt, Ft and Kt are
determined by ft, αt and βt.

Proof of Theorem A.1: (1) By the m-strong convexity and
L-smoothness of f , we have

f(x)− f(y) ≥ ∇f(y)
>

(x− y) +
m

2
‖x− y‖2, (12)

f(y)− f(x) ≥ ∇f(y)
>

(y − x)− L

2
‖y − x‖2. (13)

(1a) Consider (12) with (x,y) ≡ (xt,yt). We leverage yt =
xt + β (xt − xt−1) and the distributive law 10 for

f(xt)− f(yt)

≥ β∇f(yt)
>

(xt−1 − xt) +
mβ2

2
‖xt−1 − xt‖2,

= β(∇f(yt) + ∂`(wt))
>

(xt−1 − xt − x?t−1 + x?t )

+
mβ2

2
‖xt−1 − xt − x?t−1 + x?t ‖2

+ β(∇f(yt) + ∂`(wt))
>

(x?t−1 − x?t )
− β∂`(wt)

>
(xt−1 − xt)

+mβ2(xt−1 − xt − x?t−1 + x?t )
>

(x?t−1 − x?t )

+
mβ2

2
‖x?t−1 − x?t ‖2.

10Apply 1) a>c = (a+ b)>(c − d) + (a+ b)>d − b>c and 2) c>c =
(c− d)>(c − d) + 2(c− d)>d + d>d, with a = ∇f(yt), b = ∂`(wt),
c = xt−1 − xt, d = x?t−1 − x?t ,

We re-organize the the right-hand-side into the matrix form as

1

2
δt
>

 mβ2 −mβ2 −β mβ2

−mβ2 mβ2 β −mβ2

−β β 0 −β
mβ2 −mβ2 −β mβ2

 δt−β∂`(wt)
>(xt−1−xt),

with δt> := (xt−x?t ,xt−1−x?t−1,∇f(yt)+∂`(wt),x
?
t −x?t−1).

(1b) Consider (13) with (x,y) ≡ (xt+1,yt). We leverage
xt+1 = yt − α∇ft(yt) − α∂`(wt) and the distribution law,
resulting in

f(yt)− f(xt+1) ≥ α∇f(yt)
>

(∇f(yt) + ∂`(wt))

− Lα2

2
‖∇f(yt) + ∂`(wt)‖2,

=
α(2− Lα)

2
‖∇f(yt) + ∂`(wt)‖2

− α∂`(wt)
>

(∇f(yt) + ∂`(wt)).

Now, we sum the terms involving ∂`(wt) in the r.h.s. of
inequalities in (1a) and (1b), leverage (10), and then apply
the convexity of `, xt ∈ X and wt = xt+1 ∈ X , to obtain
the following

− β∂`(wt)
>

(xt−1 − xt)− α∂`(wt)
>

(∇f(yt) + ∂`(wt))

= −∂`(wt)
>

(xt −wt) ≥ `(wt)− `(xt) = 0,

which results in f(xt)− f(xt+1) ≥ ξt
>X1,t ξt.

Note that we have identified (f,m,L, α, β) with
(ft,mt, Lt, αt, βt), and note that ∇ft(x?t ) + ∂`(x?t ) = 0.

(1c) Similarly, consider (12) with (x,y) ≡ (x?t ,yt). From
yt = xt + β (xt − xt−1) and the distributive law,

f(x?t )− f(yt)

≥ ∇f(yt)
>

(x?t − yt) +
m

2
‖x?t − yt‖2,

= (∇f(yt) + ∂`(wt))
>

(x?t − yt + βx?t − βx?t−1)

+
m

2
‖ − (1 + β)(xt − x?t ) + β(xt−1 − x?t−1)‖2

− β(∇f(yt) + ∂`(wt))
>

(x?t − x?t−1)− ∂`(wt)
>

(x?t − yt)
−mβ[−(1 + β)(xt − x?t ) + β(xt−1 − x?t−1)]

>
(x?t − x?t−1)

+
mβ2

2
‖x?t − x?t−1‖2,

=
1

2
δt
>

m(1 + β)2 −η −(1 + β) η
−η mβ2 β −mβ2

−(1 + β) β 0 −β
η −mβ2 −β mβ2

 δt
− ∂`(wt)

>
(x?t − yt),

with η = m(1 + β)β. We add this inequality to that in (1b)
and leverage

− ∂`(wt)
>

(x?t − yt)− α∂`(wt)
>

(∇f(yt) + ∂`(wt))

= −∂`(wt)
>

(x?t −wt) ≥ `(wt)− `(x?t ) = 0,

resulting in f(x?t )− f(xt+1) ≥ ξt
>X2,t ξt.

(2) Let us define the time varying function

Vt(zt) :=

[
zt

x?t − x?t−1

]>
Ht

[
zt

x?t − x?t−1

]
,
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where we take

Ht :=
1

2αt−1

 δt−1

1− δt−1

δt−1

 [δt−1, 1− δt−1, δt−1

]
,

with {αt}t those in the solution system (9) and {δt}t the
sequence of scalars which defines {βt}t. Now, verify

Vt+1(zt+1)− αt−1

αt
Vt(zt) = ξt

>Jtξt,

where ξt := (zt, ut, vt), which are those define (11),
resulting in ξt := (xt − x?t , xt−1 − x?t−1,∇ft(yt) +
∂`(wt),x

?
t − x?t−1, x

?
t+1 − x?t ) and

Jt =
1

2αt


0 0 −αtδtδt−1 −δt−1 0
0 0 αtβtδ

2
t βtδt 0

−αtδtδt−1 αtβtδ
2
t α2

t δ
2
t −αtβtδ2

t 0
−δt−1 βtδt −αtβtδ2

t 1− 2δt−1 0
0 0 0 0 0

 .

Let us compute

Mt := δ
2
t−1X1,t + δtX2,t

=
1

2


mt(δ

2
t − 1) −mtβtδtδt−1 −δtδt−1 mtβtδtδt−1 0

−mtβtδtδt−1 mtβ
2
t δ

2
t βtδ

2
t −mtβ2t δ

2
t 0

−δtδt−1 βtδ
2
t αt(2 − Ltαt)δ2t −βtδ2t 0

mtβtδtδt−1 −mtβ2t δ
2
t −βtδ2t mtβ

2
t δ

2
t 0

0 0 0 0 0

 ,

and then achieve

ξt
>(Jt −Mt)ξt =

[
zt

x?t − x?t−1

]>
N1,t

[
zt

x?t − x?t−1

]
+

[
zt

x?t − x?t−1

]>
N2,t

[
zt

x?t − x?t−1

]
− αt(1− Ltαt)ut>ut,

with, for each t ≥ 1,

N1,t :=
1

2

−mt(δ
2
t − 1) mtβtδtδt−1 −mtβtδtδt−1

mtβtδtδt−1 −mtβ
2
t δ

2
t mtβ

2
t δ

2
t

−mtβtδtδt−1 mtβ
2
t δ

2
t −mtβ

2
t δ

2
t

 ,

∼=
mt

2

−(δ2
t − 1) βtδtδt−1 0

βtδtδt−1 −β2
t δ

2
t 0

0 0 0

 � 0,

and, using the fact that δt > (t+ 1)/2, ∀ t ≥ 0, we have

N2,t :=
1

2

 0 0 −δt−1

0 0 βtδt
−δt−1 βtδt 1− 2δt−1

 � 0.

Then, if we select αt ≤ 1/Lt, it results in

ξt
>(Jt −Mt)ξt ≤ 0.

We rewrite it as

Vt+1(zt+1)− αt−1

αt
Vt(zt) ≤ ξt

>Mtξt,

≤ δ2
t−1(ft(xt)− ft(xt+1)) + δt(ft(x

?
t )− ft(xt+1)),

= −δ2
t (ft(xt+1)− ft(x?t )) + δ2

t−1(ft(xt)− ft(x?t )).

As ft being locally Lipschitz in t, there exists a non-negative
function h(x) such that

ft+1(xt+1)− ft(xt+1) ≤ h(xt+1),

resulting in

Vt+1(zt+1)− αt−1

αt
Vt(zt)

≤ −δ2
t (ft+1(xt+1)− ft+1(x?t+1)) + δ2

t−1(ft(xt)− ft(x?t ))
− δ2

t (ft+1(x?t+1)− ft(x?t )) + δ2
t h(xt+1), ∀ t

Summing up the above set of inequalities over the moving
horizon window t ∈ T = {t− 1, . . . , t− T}, where T =
min{t− 1, T0} with some T0 ∈ Z>0, we obtain

Vt(zt) +
∑
k∈T

(1− αk−1

αk
)Vk(zk)− Vt−T (zt−T )

≤ −δ2
t−1(ft(xt)− ft(x?t ))

+ δ2
t−T−1(ft−T (xt−T )− ft−T (x?t−T ))

−
∑
k∈T

δ2
k(fk+1(x?k+1)− fk(x?k)) +

∑
k∈T

δ2
kh(xk+1).

Let us denote by Gt, Kt, and Ft, respectively, the horizon
accumulated potential, the bound of the locally Lipschitz
function h, and the variation bound of the optimal objective
values. That is,

Gt :=Vt−T (zt−T )− Vt(zt)−
∑
k∈T

(1− αk−1

αk
)Vk(zk),

Kt := max
k∈T
{h(xk+1)} ,

Ft := max
k∈∈T

{
|fk+1(x?k+1)− fk(x?k)|

}
.

Then, using the fact that (1) δt−1 ≥ (t + 2)/2, for all t ≥ 0;
(2) δt−T−1 ≤ t− T − 1 + δ0 with δ0 = (1 +

√
5)/2, and (3)

δt is monotonically increasing, we have

ft(xt)− ft(x?t ) ≤
4Gt

(t+ 2)2
+ TFt + TKt

+
4(t− T − 1 + δ0)2

(t+ 2)2
(ft−T (xt−T )− ft−T (x?t−T )).

Note that, when t ≤ T0 + 1, we have T = t− 1. This gives

ft(xt)− ft(x?t ) ≤
4Gt

(t+ 2)2
+ (t− 1)Ft + (t− 1)Kt

+
4δ2

0

(t+ 2)2
(f1(x1)− f1(x?1)). �

C. Proofs of lemmas and theorems

Proof of Lemma IV.1: By the definition of the ambiguity set,
we have that, for any distribution Q ∈ Pt+1(α,u)

dW(Q, P̂t+1|t) ≤ ε̂,

which, by Kantorovich-Rubinstein Theorem, is equivalent to∫
Z
h(x)Q(dx)−

∫
Z
h(x)P̂t+1|t(dx) ≤ ε̂, ∀h ∈ L,

where L is the set of functions with Lipschitz constant 1 and
Z is the support of the random variable x. For a given u, let
us select h to be

h(x) :=
`(u,x)

L(u)
,
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where L is the positive Lipschitz function as in Assump-
tion IV.1. Substituting h to the above inequality, we have∫

Z
`(u,x)Q(dx)−

∫
Z
`(u,x)P̂t+1|t(dx) ≤ ε̂L(u),

or equivalently

EQ [`(u,x)] ≤ EP̂t+1|t(α,u) [`(u,x)] + ε̂L(u).

As the inequality holds for every Q ∈ Pt+1, therefore

sup
Q∈Pt+1(α,u)

EQ [`(u,x)]

≤ EP̂t+1|t(α,u) [`(u,x)] + ε̂(t, T, β,α,u)L(u). �

Proof of Theorem IV.1: We show this by constructing a
distribution in the ambiguity set. By Assumption IV.2 on
convex and gradient-accessible functions, there exists an index
j ∈ T such that the derivative ∇x`(u,x) at (u, x̄(j)),
x̄(j) :=

∑p
i=1 αiξ

(i)
j (α,u), satisfies

‖∇x`(u, x̄(j))‖ = L(u).

Now using this index j, we construct a parameterized distri-
bution as follows

Q(∆x) =
1

T

∑
k∈T ,k 6=j

δ
{
p∑
i=1

αiξ
(i)
k (α,u)}

+
1

T
δ{x̄(j)+∆x},

where ∆x ∈ Rn with ‖∆x‖ ≤ T ε̂. By the definition of the
ambiguity set and, since the support of the distribution P is
Ξt+1 = Rn, we have Q(∆x) ∈ Pt+1(α,u).

Next, we quantify the lower bound of the following term

EQ(∆x) [`(u,x)]− EP̂t+1|t(α,u) [`(u,x)]

=
1

T

(
`(u, x̄(j) + ∆x)− `(u, x̄(j))

)
.

By Assumption IV.2 on the convexity of ` on x, we have

`(u, x̄(j) + ∆x)− `(u, x̄(j)) ≥ ∇x`(u, x̄(j))
>

∆x.

Then, by selecting

∆x :=
T ε̂∇x`(u, x̄(j))

‖∇x`(u, x̄(j))‖
,

we have
∇x`(u, x̄(j))

>
∆x = T ε̂L(u).

These bounds result in

EQ(∆x) [`(u,x)]− EP̂t+1|t(α,u) [`(u,x)] ≥ ε̂L(u).

As Q(∆x) ∈ Pt+1(α,u), therefore

sup
Q∈Pt+1(α,u)

EQ [`(u,x)] ≥ EP̂t+1|t(α,u) [`(u,x)] + ε̂L(u).

Finally, with Assumption IV.1 on Lipschitz loss functions and
Lemma IV.1 on an upper bound of (P1), we equivalently write
Problem (P1) as

inf
u∈U

EP̂t+1|t(α,u) [`(u,x)] + ε̂(t, T, β,α,u)L(u),

which is the Problem (P2). �

Proof of Lemma IV.2: This is the direct application of the
definition of the local Lipschitz condition. �

Proof of Lemma V.1: First, we have

Fµ(u) ≤ F (u) +
1

2µ
‖u− u‖2 = F (u), ∀ u ∈ U .

Then, we compute

F (u)− Fµ(u) = sup
z∈U

{
F (u)− F (z)− 1

2µ
‖z − u‖2

}
,

≤ sup
z∈U

{
g(u)

>
(u− z)− 1

2µ
‖z − u‖2

}
,

≤ sup
z

{
g(u)

>
(u− z)− 1

2µ
‖z − u‖2

}
,

≤ µ

2
g(u)

>
g(u) ≤ D

2
µ,

where the equality comes from the definition of Fµ(u), the
first inequality leverages the convexity of F , the second one
relaxes the constraint set, the third one applies the achieved
optimizer z? = u − µg(u), and the last one is from the
boundedness of subgradients.

Further, given F as described, it is well-known (see,
e.g., [43, Proposition 12.15] for details) that Fµ is convex and
continuously differentiable where its gradient ∇Fµ is Lips-
chitz continuous with constant 1/µ. In addition, the minimizer
z?(u) of Fµ is achievable and unique, resulting in an explicit
gradient expression of Fµ as follows

∇Fµ(u) =
1

µ
(u− z?(u)).

In addition, we claim that, if F is M -strongly convex, Fµ is
M/(1 + µM)-strongly convex, following [44, Theorem 2.2].
Finally, we equivalently write the minimization problem as
follows

min
u∈U

Fµ(u) = min
u∈U

min
z∈U

{
F (z) +

1

2µ
‖z − u‖2

}
= min
z∈U

min
u∈U

{
F (z) +

1

2µ
‖z − u‖2

}
= min
z∈U

F (z),

where the first line applies the achievability of the minimizer
of the problem that defines Fµ, the second switches the
minimization operators, the third applies the fact that u = z
solves the inner problem. This concludes that any u that
minimizes Fµ also minimizes F , and vice versa. �

Proof of Theorem V.1: Let us consider the solution sys-
tem (5). At each time t, let us select ε := εt = 1/Lip(Gµ),
or equivalently, µ/b with b = maxk∈T bk. Let ηt satisfy

δ−1 = 1, δt+1 :=
1 +

√
1 + 4δ2

t

2
, ηt :=

δt−1 − 1

δt
.

Then, by Theorem A.1 with t ≥ 2, the following holds

Gµ(t,ut)−Gµ(t,u?t ) ≤
4Wt

(t+ 2)2
+ TFt, (14)
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where u?t is a solution to (P2′), T = min{t−1, T0} with some
horizon parameter T0 ∈ Z>0. Notice that T0 is the length of
the used historical data whenever such data are available. The
time-varying parameter Wt depends on the initial objective
discrepancy and the accumulated energy storage in the con-
sidered time horizon T , and Ft is the variation bound of the
optimal objective values in T . Specifically, we have

Ft = max
k∈T

{
|Gµ(k + 1,u?k+1)−Gµ(k,u?k)|

}
+ L̄,

with L̄ the variation bound of Gµ(t,ut) w.r.t. time t. Let
us consider the storage function Vt(zt) := zt

>Htzt, where
zt := (ut − u?t , ut−1 − u?t−1, u

?
t − u?t−1) and

Ht :=
1

2εt−1

 δt−1

1− δt−1

δt−1

 [δt−1 1− δt−1 δt−1

]
� 0.

Then we have

Wt = Vt−T (zt−T )− Vt(zt)−
∑
k∈T

(1− εk−1

εk
)Vk(zk)

+ (t− T − 1 + δ0)2(ft−T (xt−T )− ft−T (x?t−T )),

where the first two term is the energy decrease in the horizon
T ; the third sum term indicates the instantaneous energy
change, which depends on the online, estimated Lipschitz
constant; the last term depends on the goodness of the initial
decision at the beginning of the current T . Note how the
selection of εt and T affect Wt (or Gt in Theorem A.1). In the
most conservative scenario, we select εt := min{εt−1, µ/bt}
and T0 =∞, which results in a constant upper bound of Wt

as follows

Wt ≤ V1(z1) + δ2
0(f1(x1)− f1(x?1)),

therefore, in this case, the bound (14) essentially depends on
the growing term (t− 1)Ft. A less conservative way is to use
moving horizon strategy, with εt := min{εt−1, µ/bt} but a
finite T0. Then, as t is sufficiently large, we have

Wt ≤ Vt−T (zt−T ) + t2(ft−T (xt−T )− ft−T (x?t−T )),

where, in this case, the bound (14) essentially depends on Ft
and ft−T (xt−T )− ft−T (x?t−T ).

Now, we consider for any t ≥ 2. By Definition V.1, there
exists a constant a > 0 such that

G(t,ut)− aµ ≤ Gµ(t,ut),

and by Lemma V.1, we have that u?t is a minimizer of (P2′)
if and only if it is that of (P2), and

Gµ(t,u?t ) ≡ G(t,u?t ).

This results in

G(t,ut)−G(t,u?t ) ≤
4Wt

(t+ 2)2
+ TFt + aµ, (15)

with an equivalent expression of Ft as

Ft = max
k∈T

{
|G?k+1 −G?k|

}
+ L̄,

where G?k := G(k,u?k) is the optimal objective value of (P2)
or, later we see, equivalent to that of (P1).

Next, by Theorem IV.1 on the equivalence of (P1) and (P2),
u?t is a minimizer of (P2) if and only if it is also that of (P1),
and

G(t,u?t ) ≡ sup
Q∈Pt+1(α,u?t )

EQ [`(u?t ,x)] . (16)

Further, as in Section IV, we claim that Problem (P1) provides
a probabilistic bound for the objective of (P), resulting in

Prob
(
Pt+1|t ∈ Pt+1

)
≥ ρ(t), or equivalently, (17)

Prob
(
EPt+1|t [`(ut,x)] ≤ G(t,ut)

)
≥ ρ(t), (18)

with ρ(t) as in Theorem III.1. Then by (17), we know that
Pt+1|t ∈ Pt+1 if and only if dW(Pt+1|t, P̂t+1|t) ≤ ε̂ where ε̂
is selected as in Theorem III.1. Further, since dW is a metric,
for any Q ∈ Pt+1, we claim

dW(Q,Pt+1|t) ≤ dW(Q, P̂t+1|t) + dW(Pt+1|t, P̂t+1|t),

≤ ε̂+ ε̂ ≤ 2ε̂.

By Assumption IV.1 and the same proof procedure of
Lemma IV.1 on the above inequality, we have, for every u,
the following:

sup
Q∈Pt+1(α,u)

EQ [`(u,x)] ≤ EPt+1|t [`(u,x)] + 2L(u)ε̂.

By taking u := u?t and using (16), we have

G(t,u?t ) ≤ EPt+1|t [`(u?t ,x)] + 2L(u?t )ε̂. (19)

We combine the inequality (15), (18) and (19), resulting in

EPt+1|t [`(ut,x)]− EPt+1|t [`(u?t ,x)]

≤ 4Wt

(t+ 2)2
+ TFt + aµ+ 2L(u?t )ε̂,

with the probability at least ρ(t), holds for any t ≥ 2. Fur-
thermore, if all historical data are assimilated for the decision
ut, i.e., we select T0 =∞ with εt := min{εt−1, µ/bt}, then,
the term Wt is upper bound by a constant and, the radius
ε̂ asymptotically goes to zero due to the selection as in [29,
Section IV]. Consequently, this results in

lim inf
t→∞

Prob (Rt ≤ TFt + aµ) ≥ 1− β. �
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