
1

Distributed Task Allocation for Self-Interested Agents
with Partially Unknown Rewards

Nirabhra Mandal, Student Member, IEEE, Mohammad Khajenejad, Member, IEEE,
and Sonia Martínez, Fellow, IEEE

Abstract—This paper provides a novel solution to a task alloca-
tion problem, by which a group of agents assigns a discrete set of
tasks in a distributed manner. In this setting, heterogeneous agents
have individual preferences and associated rewards for doing each
task; however, these rewards are only known asymptotically. The
assignment problem is formulated by means of a combinatorial
partition game for known rewards, with no constraints on the
number of tasks per agent. We relax this into a weight game,
which together with the former, are shown to contain the optimal
task allocation in the corresponding set of Nash Equilibria (NE).
We then propose a projected, best-response, ascending gradient
dynamics (PBRAG) that converges to a NE in finite time. This
forms the basis of a distributed online version that can deal with
a converging sequence of rewards by means of an agreement sub-
routine. We present simulations that support our results.

Index Terms—Best response, partition game, projected gradient
ascent, unknown reward, weight game

1. INTRODUCTION

A prototypical coordination problem aims to find an efficient
assignment of group of agents to a collection of tasks. The
tasks can range from abstract objectives to specific physical
jobs, the nature of which may not be known. The agents may
have heterogeneous capabilities, and react to different sets of
incentives that are learned progressively. This necessitates of
novel task-assignment algorithms that can adapt and react online
as new information arises. Motivated by this, we study a discrete
task allocation problem modeled as a game of self-interested
agents with partial knowledge of their rewards. This requires
addressing the problem’s combinatorial nature, and designing
provable-correct distributed dynamics that adapt to dynamic re-
wards revealed online. To the best of our knowledge, algorithms
combining all these features are not available in literature.

The problem of task allocation in Cooperative Control with
known rewards has been widely considered; see e.g. [1]–[3].
A centralized solution to this problem, where the number m
of tasks and agents are equal and a task-agent matching is
sought, is the optimization-based Hungarian algorithm [4], and
its distributed version [5]. The latter, which reproduces the
Hungarian algorithm locally, requires tracking of the agents’
identities associated with each task, has a time complexity of
O(m3) and communication cost of O(m logm) (per communi-
cation round). Thus, the algorithm can be computationally and
memory-intensive for large problems, and hard to adapt as new
tasks are generated or their valuations change online. The work
in [6] provides a tractable, sub-optimal solution to the same
NP-hard problem, while the research in [7] showed that the sub-
optimality can be resolved by restricting heterogeneous agents

This work is supported by the ARL grant: W911NF-23-2-0009.
Nirabhra Mandal, Mohammad Khajenejad and Sonia Martínez are with the

Mechanical & Aerospace Engineering Department, University of California San
Diego. {nmandal,mkhajenejad,soniamd}@ ucsd.edu.

to be of certain types. In the same vein, the works in [8]–[10]
consider submodular functions which allow rewards to take any
non-negative value. However, submodular optimization can be
applied in specific domains where the property naturally arises,
such as in certain economics and distributed sensing problems.
Alternatively, a well known approach to (unconstrained) task
assignment problems is given by k-means clustering and the
Lloyd’s algorithm [11]. By interpreting that tasks are generated
by a probability distribution, the approach can handle tasks
generated dynamically [12]–[15]. However, Lloyd’s algorithm
is sensitive to the initial task assignment for a small number of
agents, and converges to a local minima.

We note that the related body of work Operations Re-
search [16], [17] and Economics [18] deal mostly with the
hardness of the task allocation problems and are often uninter-
ested in distributed implementations. Moreover, these methods
fail short in addressing agent heterogeneity or the mismatch
between the number of agents and the number of tasks. Instead,
the Cooperative Control literature does not consider the hardest
of task allocation problems and aims to develop distributed
algorithms under various degrees of problem knowledge.

Game-theoretic models have also been proposed to find so-
lutions to task allocation problems. For sensor networks, each
agent is equipped with an appropriate utility function [19]–[21]

and the optimal task allocation is related to the Nash equilib-
rium of this game. Any Nash-seeking [22] algorithm returns a
solution; but often, these algorithms require strong assumptions
on the utility functions and their derivatives. In particular, earlier
works of task allocation in Cooperative Control [19], [20]
assume complete and perfect information on agents’ utilities,
while in practice only imperfect information about tasks and
other agents’ capabilibilities is available. Subsequently, this has
been mostly addressed via consensus algorithms [23], [24],
and gossip-based algorithms [25] where each agent applies this
strategy to estimate all other agents’ strategies and compute the
gradient of its own utility. We note that none of these works
considers a scenario where the agent’s utility itself changes
due to external factors; thus, the available algorithms are not
adaptive with respect to changing environments. Potential games
can be used in this regard; however, they do not work when
the reward parameters are unknown (i.e. they require again
perfect information). This encompasses [21], which characterizes
the transient behavior for set covering games, and [26], which
studies a general potential game approach for task allocation.
However, in the latter case, the agents are yet homogeneous and
tasks have the same rewards for all agents; which facilitates the
analysis and facilitates handling imperfect information.

In this paper, we consider a task-assignment problem where
a number of agents is to be matched to an unrestricted set of
tasks. In the considered formulation, the number of tasks per

2

agent is not constrained, yet the optimal assignment problem
remains combinatorial as the number of tasks is discrete. To deal
with arbitrary heteregenous agents, we derive a game-theoretic
partition problem formulation that favors task distribution. We
then relax the game into a weight game, one per task. We obtain
characterizations of the NE of each game, their relationship, and
identify conditions under which the NE leads to an optimal
solution of the original assignment problem. Leveraging the
relaxed formulation, and under a full-information assumption,
we derive a projected best-response dynamics that is shown to
converge to the NE (and an optimal task allocation) in finite time.
The algorithm and its analysis provide a stepping stone for a
new algorithm, d-PBRAG, which is distributed, does not require
the knowledge of other agent identities or perfect information
about their utilities or their individual strategies, and converges
to the optimal task allocation, also in finite time, as rewards are
revealed online.

2. PRELIMINARIES

Here, we formalize the notations and briefly list some well-
known concepts that are used to solve the problem of interest.

A. Notations

The sets of real numbers, non-negative real numbers, and non-
negative integers are denoted as R, R≥0, and Z≥0, respectively.
For a set S, |S| denotes its cardinality, 2S represents the class
of all its subsets, Sn denotes the n Cartesian product of S with
itself, and Sn×m collects all n×m matrices whose (i, j)th entry
lies in S. Given M ∈ Sn×m, mj

i is its (i, j)th entry, and m⊤
i ∈

Sm (resp. mj ∈ Sn) its ith row (resp. its jth column). For x ∈ R,
[x]10 := max{0,min{x, 1}}. For a set S, define max(2) S :=
max{s ∈ S | s ̸= max S}. For x ∈ Rn and S ⊆ Rn, d(x,S) :=
infy∈S ∥x− y∥1 is the distance of the vector from the set.

B. Game theory

A strategic form game [27] is a tuple G :=
⟨A, {Si}i∈A, {ψi}i∈A⟩ consisting of the following components:

1) a set of players (or agents) A;
2) a set of strategies si ∈ Si available to each i ∈ A;
3) a set of utility functions ψi : ×i∈ASi → R over the

strategy profiles of all the agents.

In what follows, s−i denotes the strategy profile of all players
other than i ∈ A. Next, we formally state the definition of the
NE of a strategic form game.

Definition 2.1 (Nash equilibrium). The strategy profile (ŝi, ŝ−i)
is a Nash equilibrium (NE) of G if and only if

ψi(ŝi, ŝ−i) ≥ ψi(si, ŝ−i), ∀si ∈ Si, ∀i ∈ A .

NE(G) denotes the set of all Nash equilibria of G . •

C. Graph theory

A directed graph [28] G := (A, E), is a tuple consisting of (a)
a set of nodes (here agents A); (b) a set of arcs E ⊆ A × A
between the nodes. The set Ni := {j ∈ A | (j, i) ∈ E} denotes
the (in) neighbors of node i ∈ A and N i := Ni ∪ {i}. A path
is an ordered set of non-repeating nodes such that each tuple of
adjacent nodes belongs to E . The graph G is said to be strongly
connected if there exists a path from every node to every other
node. The diameter of the graph diam(G) is the length of the
largest possible path between any two nodes.

3. PROBLEM FORMULATION

A group of agents A := {1, · · · , n} is to complete a set of
tasks Q := {1, · · · ,m}, where n ̸= m possibly, in a distributed
manner. For this purpose, each agent i ∈ A encodes via ϕi :
Q → R≥0 the importance of each task (the higher ϕi(q) the
larger the agent’s capability/fondness on q ∈ Q) and ri : Q →
R≥0 the reward for completing each task. For the sake of brevity,
define fi(q) := ri(q)ϕi(q) ≥ 0, ∀q ∈ Q, ∀i ∈ A. Note that any
function of the form fi(q) = gi(ri(q), ϕi(q)) ≥ 0 can be used
to define the effective reward that the agent receives. We choose
this particular structure because it scales the reward agent i ∈ A
receives for task q ∈ Q by its capability (or fondness) ϕi(q)
making it so that the effective reward fi(q) is zero if either ri(q)
or ϕi(q) is zero. Further, the resulting cost function in (1a) can
be interpreted as a discrete counterpart of the expected utility
of coverage control problems [14], [29] and a type of clustering
metric for heterogeneous agents. An optimal task assignment is
the solution to

max
P=(V1,··· ,Vn)⊆Qn

J(P) :=
∑
i∈A

∑
q∈Vi

fi(q), (1a)

s.t.
⋃
i∈A

Vi = Q; Vi ∩ Vj = ∅, if i ̸= j. (1b)

Here, Vi ⊆ Q is the set of tasks assigned to agent i ∈ A and
P = (V1, · · · ,Vn) is the ordered collection of sets that defines
a partition of Q (as in (1b)). For the sake of completeness, if
Vi = ∅ for some i ∈ A, then we let

∑
q∈Vi

fi(q) = 0.
The group of agents is to compute an optimal partition of the

task set Q on their own. Naturally, each agent i ∈ A aims to get
the tasks q ∈ Q for which fi(q) is the largest. This motivates
the following definition.

Definition 3.1 (Task specific dominating agent). An agent i ∈ A
is said to be a dominating agent for task q ∈ Q (or i dominates
q), if fi(q) ≥ fj(q), ∀j ∈ A. If a task q ∈ Q has exactly one
dominating agent, we say that there exists a unique dominating
agent for task q. •

The collection of possible strategies for each agent is a
combinatorial class, which grows exponentially with m. To
address this problem, we first assume that each i ∈ A measures
the utility of a subset of tasks Vi ⊆ Q via

Hi(Vi,V−i) :=
∑
q∈Vi

[
fi(q)− max

{j∈A | j ̸=i, q∈Vj}
fj(q)

]
. (2)

Here, again, if Vi = ∅ for some i ∈ A, then we let
∑

q∈Vi
[·] = 0

and maxq∈Vi
fi(q) = 0. This leads to the partition game

GP :=
〈
A, {2Q}i∈A, {Hi}i∈A

〉
,

where the strategy of each agent is to choose a subset Vi of
Q to maximize Hi. In this way, agent strategies are no-longer
required to form a valid partition, but the utility in (2) penalizes
each agent for taking tasks that others have chosen.

Second, we further relax this game by reducing the decision
of each agent i ∈ A regarding task q ∈ Q to the computation
of a weight wq

i ∈ [0, 1]. Briefly, this defines W ∈ [0, 1]n×m

as the matrix whose (i, q)th entry is wq
i . Thus, w⊤

i ∈ [0, 1]m

(resp. wq ∈ [0, 1]n) represents the weights that agent i ∈ A
(resp. for task q ∈ Q) gives to each task (resp. given by each
agent). Agent i ∈ A is equipped with the utility function:

Ui(wi,w−i) =
∑
q∈Q

[
fi(q)w

q
i − max

j∈A\{i}
fj(q)w

q
jw

q
i

]
, (3)

3

which collectively define the weight game
GW := ⟨A,W, {Ui}i∈A⟩,

In this way, a product of weights in the second part of the sum
in (3) relaxes the check on overlapping task in (2). In this paper,
we ignore the trivial case where all agents get the same payoff
for a task, as stated in the following.

Assumption 3.2 (Non-trivial task assignment). Not all agents
are dominating for each task q ∈ Q. •

Note that Assumption 3.2 is equivalent to stating that the
diversity of preferences and agents is such that there will be
a dominating agent per task according to the designed game
This is because the best effective reward fi(q) depends on each
agent’s preferences, ϕi(q), on each task q. As preferences can
differ, this changes the effective reward that the agent receives.

The above framework allows us to deal with a case where
the fi(q) are unknown to the agent, but where these values
can be learned progressively by an external mechanism until
convergence. More precisely, we assume the following.

Assumption 3.3 (Converging reward sequence). For each i ∈ A,
q ∈ Q, there exists a sequence {zqi (t)}t∈Z≥0

such that zqi (t) →
fi(q) as t→ ∞. •

Remark 3.4 (On the choice of utilities). We are interested in
solving the optimization problem (1) in a distributed way while
the fi(q)’s are unknown. We do this by designing a multi-agent
system game; i.e., by equipping agents with a suitable utility
that is both easy to compute and results into useful properties.
In this case, the NE of the game are related to the optimizers
of the task allocation problem, which allows us to reduce the
original combinatorial problem into a NE-seeking problem. •

In what follows, we first study the games when the reward
parameters are known. Then we adapt the results for the case
when only a converging reward sequence is available.

Now we formally state the goals of this work.

Problem 3.5. Given the aforementioned setup and the non-
trivial task assignment assumption, find

1) a relationship between the NE of GP and GW ,
2) a relationship between the NE and optimal partitions

according to (1),
3) a distributed algorithm that converges to the NE of the

limiting weight game GW under the converging reward
sequence assumption. •

4. ON NASH EQUILIBRIA AND OPTIMAL PARTITIONS

We start by addressing the first two problems above. Thus, we
first characterize the NE of the partition game GP .

Lemma 4.1 (Nash equilibria of GP). The strategy (V̂i, V̂−i) ∈
NE(GP) if and only if:

1) for each q ∈ Q, ∃ i ∈ A dominating for q and q ∈ V̂i;
2) if j is not a dominating agent for task q, then q ̸∈ V̂j .

Proof. First, we show the necessity of Properties 1 and 2.
Suppose (V̂i, V̂−i) ∈ NE(GP). We prove Property 1 by contra-
diction. Assume ∃ q ∈ Q such that ∀i ∈ A dominating for task
q, q /∈ V̂i. Pick such an agent i and take Vi = V̂i ∪ {q}. Then,

Hi(Vi, V̂−i)−Hi(V̂i, V̂−i) = fi(q)− max
k ̸=i, q∈V̂k

fk(q) > 0.

The inequality is strict since i is dominating and the max is over
all agents that are not dominating for q (by assumption). This is
a contradiction with (V̂i, V̂−i) ∈ NE(GP).

The necessity of Property 2 also follows from contradiction.
Suppose ∃ q ∈ Q and a j ∈ A not dominating for q with q ∈ V̂j .
From Property 1, there is an i ∈ A dominating for q with q ∈ V̂i.
Thus, with strategy (V̂j , V̂−j),

fj(q)− max
k ̸=j, q∈V̂k

fk(q) = fj(q)−max
k∈A

fk(q) < 0.

Now, consider Vj = V̂j \ {q}. It follows that Hj(Vj , V̂−j) −
Hj(V̂j , V̂−j) > 0, contradicting (V̂j , V̂−j) ∈ NE(GP).

Now, we show sufficiency. Let (V̂i, V̂−i) satisfy Properties 1
and 2 and let i ∈ A be an arbitrary but fixed agent. Suppose
that Vi ̸= V̂i is any other strategy. Then, the proof follows from
three cases:

Case (i): ∃ q ∈ Vi such that q /∈ V̂i and i is dominating for q.
Then, since ∃ j ∈ A dominating for q with q ∈ V̂j ,

fi(q)− max
k ̸=i, q∈V̂k

fk(q) = fi(q)− fj(q) = 0.

Case (ii): ∃ q ∈ Vi such that q /∈ V̂i and i does not dominate
q. Then, as ∃ j ∈ A dominating for q and q ∈ V̂j , we have

fi(q)− max
k ̸=i, q∈V̂k

fk(q) = fi(q)− fj(q) < 0.

Case (iii): ∃ q ∈ V̂i such that q /∈ Vi. This can only happen if
i dominates q (else, by Property 2, q /∈ V̂j). Then,

fi(q)− max
k ̸=i, q∈V̂k

fk(q) ≥ 0.

From the above, it is easy to see that any deviation from
(V̂i, V̂−i) will not result in an increase in utility for i since
Hi(Vi, V̂−i)−Hi(V̂i, V̂−i) = fi(q)− max

k ̸=i, q∈V̂k

fk(q). ■

From the previous result, at least one of the dominating agents
will be assigned to a task by means of a NE strategy of GP .
However, this does not preclude that two dominating agents are
assigned the same task. Next, we show that the NE of the relaxed
game GW are equivalent to the NE of GP .

Lemma 4.2 (Nash equilibria of GW). The strategy (ŵi, ŵ−i) ∈
NE(GW) if and only if:

1) for each q ∈ Q, ∃ i ∈ A dominating for q and ŵq
i = 1;

2) if j is not a dominating agent for task q, then ŵq
j = 0.

Proof. First, we show the necessity of all properties. Suppose
(ŵi, ŵ−i) ∈ NE(GW). We show Property 1 is necessary by
contradiction. Consider an arbitrary q ∈ Q and suppose that for
all dominating agents i∗q ∈ A for task q, it holds that ŵq

i∗q
< 1.

In particular, for any such i∗q , we have maxj ̸={i∗q} fj(q)ŵ
q
j <

fi∗q (q). Now consider the strategy wi∗q
, where wq

i∗q
= 1 and

w
i∗q
p = ŵ

i∗q
p , ∀p ̸= q ∈ Q. Then,
Ui∗q

(wi∗q
, ŵ−i∗q

)− Ui∗q
(ŵi∗q

, ŵ−i∗q
) =[

fi∗q (q)−max
j ̸=i∗q

fj(q)ŵ
q
j

][
1− ŵq

i∗q

]
> 0.

This leads to a contradiction with (ŵi, ŵ−i) ∈ NE(GW).
We similarly show Property 2 is necessary by contradiction.

Let q ∈ Q be an arbitrary task, and suppose that ∃ j ∈ A which
is not dominating for q but for which ŵq

j > 0. Due to Property 1,
let i∗q be the dominating agent for q such that ŵq

i∗q
= 1. Now

define a new strategy wj , with wq
j = 0 and wj

p = ŵj
p, ∀p ̸= q ∈

Q. Then,
Uj(wj , ŵ−j)− Uj(ŵj , ŵ−j) =

[
fj(q)− fi∗q (q)

]
[−ŵq

j] > 0,

4

where the inequality is because both terms are negative. This
contradicts (ŵi, ŵ−i) ∈ NE(GW).

Next, we show sufficiency. Let (ŵi, ŵ−i) ∈ [0, 1]n×m be a
candidate strategy satisfying Properties 1- 2 and let i ∈ A. Take
any other wi ̸= ŵi and a task q ∈ Q. The proof follows from
the following cases.

Case (i): i dominates q and ŵq
i = 1. Then, by Definition 3.1,[

fi(q)−max
j ̸=i

fj(q)ŵ
q
j

]
wq

i ≤
[
fi(q)−max

j ̸=i
fj(q)ŵ

q
j

]
ŵq

i .

Case (ii): i is a dominating agent for task q and ŵq
i < 1. Then,

since ∃ j ∈ A dominating for q and ŵq
j = 1,[

fi(q)−max
k ̸=i

fk(q)ŵ
q
k

]
wq

i =
[
fi(q)− fj(q)

]
wq

i

=
[
fi(q)− fj(q)

]
ŵq

i =
[
fi(q)−max

k ̸=i
fk(q)ŵ

q
k

]
ŵq

i = 0,

since fi(q)− fj(q) = 0.
Case (iii): i is not a dominating agent for task q (and hence

ŵq
i = 0). Again, ∃ j ∈ A dominating for q and ŵq

j = 1. Then,[
fi(q)−max

k ̸=i
fk(q)ŵ

q
k

]
wq

i =
[
fi(q)− fj(q)

]
wq

i

<
[
fi(q)− fj(q)

]
ŵq

i =
[
fi(q)−max

k ̸=i
fk(q)ŵ

q
k

]
ŵq

i ,

since fi(q) < fj(q). Now, using these three cases, it is easy
to see that any deviation from (ŵi, ŵ−i) will not result in an
increase the utility of i. ■

As a direct implication of Lemma 4.2, for any W ∈ [0, 1]n×m

we can define C : [0, 1]n×m → (2Q)n as
C(W) := (tsupp (w1), · · · , tsupp (wn)), (4)

where tsupp (wi) := {q ∈ Q |wq
i = 1}, ∀i ∈ A. Then,

NE(GP) = C(NE(GW)). (5)
Next, we relate the optimal partition and the NE of the two
games through the following theorem.

Theorem 4.3 (Optimal partitions and NE). Given the problem
in (1) , O ⊆ C(NE(GW)), where

O := {P∗ | P∗ is a solution to (1)}. (6)

Proof. By (5), we can equivalently show that O ⊆ NE(GP).
Let P∗ ∈ O. It is easy to see that q ∈ V∗

i only if i ∈ A
is a dominating agent for task q. Moreover, if j ∈ A is not
dominating for q, then q /∈ V∗

j . Then from Lemma 4.1, P∗ ∈
NE(GP). The rest follows from (5). ■

The above result states that if an agent i ∈ A is assigned
tasks using the translated support of the NE of GW , this set is a
superset of the optimizers of (1). The extra solutions arise when
there are non-unique dominating agents for a task. When there
are unique dominating agents, the next result shows there is a
unique NE for GW . This follows from Lemma 4.2 immediately,
so we skip a formal proof.

Corollary 4.4 (Uniqueness of NE). Suppose that for each
q ∈ Q, i∗q is the unique dominating agent for task q. Then
NE(GW) = {Ŵ} where, for each q ∈ Q, Ŵ satisfies 1)
ŵq

i∗q
= 1, and 2) ŵq

j = 0, ∀ j ̸= i∗q . Further, P∗ = C(Ŵ)

is the unique solution to (1). ■

In general, NE(GW) is a superset of the set of optimal
partitions. The next example makes this clear.

Example 4.5 (Optimal partitions and NE). Let A = {1, 2} and
Q = {a, b}. Assume the values f1(a) = f2(a) = 0.5, f1(b) =
0.7 and f2(b) = 0.3. Then, O = {({a, b},∅), ({b}, {a})};

NE(GP) = {({a, b},∅), ({a, b}, {a}), ({b}, {a})}; and

NE(GW) =

{[
1 1
λ 0

]
,

[
1 1
1 0

]
,

[
µ 1
1 0

]}
,

where λ, µ can independently take any value in [0, 1). Thus, in
this case O ⊊ NE(GP) = C(NE(GW)). Interestingly, note that
there is an optimal partition in which agent 2 gets no task. •

Next, we design a dynamical system using which the agents
can figure out the optimal partition on their own.

5. BEST RESPONSE PROJECTED GRADIENT ASCENT

From the previous section, we know that if the agents play the
weight game GW , then the NE form a superset of the optimal
task partition (with slight abuse of notation). Thus, here we let
the agents update their weights (from any initial feasible weight)
using the gradient of their utility while assuming the others do
not change their weights. For such a dynamical system, we aim
to relate its equilibria to the NE of GW and hence also relate it
to the set O of optimal solutions to (1). Now, from (3), it can
be seen that,

∂

∂wq
i

Ui = fi(q)− max
j∈A\{i}

fj(q)w
q
j =: uqi (w

q) . (7)

Thus, the weights are updated using the following dynamics:
wq

i (t+ 1) =
[
wq

i (t) + γqi u
q
i (w

q(t))
]1
0
, (8)

with γqi ∈ R>0, ∀i ∈ A,∀q ∈ Q. We call this the projected
best response ascending gradient dynamics (PBRAG). From (7)
and (8), note that in order to compute the weight updates, each
agent i ∈ A needs to know fj(q)w

q
j , for all j ̸= i. This requires

that each agent must talk to every other agent to compute its
own gradient. The equilibrium points of this dynamics is given
by

W :=
{
W ∈ [0, 1]n×m

[
wq

i + γqi u
q
i (w

q)
]1
0
= wq

i ,

∀i ∈ A,∀q ∈ Q
}
. (9)

For this, the following result can be stated immediately.

Lemma 5.1. W ∈ W if and only if W ∈ NE(GW).

Proof. We prove this by showing that W ∈ W if and
only if W follows Properties 1 and 2 of Lemma 4.2. Suppose
that W ∈ W and consider an arbitrary but fixed q ∈ Q. We
prove Property 1 by contradiction and assume that ∀i ∈ A
dominating for q, wq

i < 1. Now, for any dominating agent
i∗q ∈ A, maxj∈A\{i∗q} fj(q)w

q
j < fi∗q (q). Thus, uqi∗q (w

q) > 0.
Since wq

i∗q
< 1 and γqi∗q > 0, this contradicts W ∈ W .

Next we prove Property 2 also by contradiction. Suppose that
∃ j ∈ A not dominating for task q but wq

j > 0. Due to Property 1,
let i∗q ∈ A be the dominating agent for task q such that wq

i∗q
= 1.

Then,
uqj(w

q) = fj(q)− max
k∈A\{j}

fk(q)w
q
k = fj(q)− fi∗q (q) < 0 .

Again, as wq
j > 0 and γqj > 0, this contradicts W ∈ W .

To show sufficiency, let W satisfy Properties 1 and 2. Then
it is easy to see that for each task q ∈ Q, uqi (w

q) ≥ 0 if i ∈ A
dominates q with wq

i = 1, uqi (w
q) = 0 if i ∈ A dominates q

with wq
i < 1, and uqj(w

q) < 0 if j ∈ A is not dominating for q
(hence wq

j = 0). Then, W ∈ W follows since γqj > 0. ■
From Lemma 5.1, we can also infer that if there is a unique

dominating agent, then the equilibrium set becomes a singleton
and follows the same structure as in Corollary 4.4.

5

In what follows, we show that starting from any initial
weights, the dynamics (8) converges to an equilibrium.

Theorem 5.2 (PBRAG converges to an equilibrium weight).
Suppose Assumption 3.2 holds. Consider the dynamics (8) with
an initial condition W(0) ∈ [0, 1]n×m and let W(t) be the
solution trajectory. Then limt→∞ W(t) = W ∈ W .

Proof. Notice that for the dynamics (8), the weight asso-
ciated with each task evolves independently from the weights
associated with other tasks. Thus, consider an arbitrary but fixed
q ∈ Q. Next, consider any i ∈ A that dominates q. From (7),
uqi (w

q) ≥ 0, ∀wq ∈ [0, 1]n. Thus, since γqi > 0, ∀i ∈ A, wq
i (t)

is non-decreasing. Hence, wq
i (t) → ŵq

i ∈ [0, 1] as t→ ∞, since
[0, 1] is compact. Now consider Iq := {j ∈ A | j dominates q},
the set X := {v ∈ [0, 1]|I

q| | vj = 1 for some j ∈ Iq} and
define the continuous function V (wq) := d({wq

i }i∈Iq ,X). It
is clear that V (wq(t + 1)) ≤ V (wq(t)) ∀t ∈ Z≥0. Applying
the LaSalle invariance principle, there is convergence to the
largest invariant set in V (w(t)) = V (w(t + 1)) for all t. We
argue this set is necessarily X . Otherwise, invariance implies
that uqi (w

q) = 0 for any dominating agent i ∈ A. However,
this occurs if and only if ∃ i′ ∈ A, i ̸= i′, another dominating
agent for task q such that wq

i′ = 1; otherwise, uqi (w
q) > 0.

Thus, {wq
i (t)}i∈Iq → X as t → ∞ . This along with previous

discussion proves that ŵq
i follows Property 1 of Lemma 4.2.

Next consider any j ∈ A that is not dominating for q.
From the previous part of the proof, we know that there is
a i ∈ A dominating for q for which wq

i (t) → 1 and thus
fi(q)w

q
i (t) → fi(q) as t → ∞. This implies that ∃ τ ∈ Z≥0

such that maxk∈A\{j} fk(q)w
q
k(t) ≥ fj(q) + ν, for some ν > 0

and ∀t ≥ τ . Then, as uqj(w
q(t)) ≤ −ν < 0, wq

j (t) is a
strictly decreasing sequence (after τ time steps). Thus, from the
dynamics in (8), wq

j (t) → ŵq
j = 0 as t→ ∞. Hence, ŵq

j follows
Property 2 of Lemma 4.2. ■

When there is a unique dominating agent for each task, we
can guarantee finite-time convergence to an optimal partition.

Theorem 5.3 (PBRAG converges in finite time). Suppose As-
sumption 3.2 holds and suppose that for each q ∈ Q, there exists
a unique dominating agent, i∗q ∈ A. Define γ := min

i∈A,q∈Q
γqi > 0,

and let δ := min
q∈Q

[
fi∗q (q) − max

j ̸=i∗q
fj(q)

]
> 0. Consider the

dynamics (8) starting from W(0) ∈ [0, 1]n×m, with the solution
trajectory W(t) → W ∈ W , as t → ∞. Then wq

i (t) = wq
i ,

∀i ∈ A, ∀q ∈ Q, ∀t ≥ 2
⌈
(γδ)−1

⌉
.

Proof. From Lemma 5.1 and Corollary 4.4, it is clear that
W is a singleton set. Let W ∈ W be the unique equilibrium
point. From Theorem 5.2, we know that W(t) → W as t→ ∞.
From (7), uqi∗q (w

q(t)) ≥ δ > 0,∀t ∈ Z≥0 and hence from (8),
∀t ∈ Z≥0, wq

i∗q
(t + 1) ≥ [wq

i∗q
(t) + γqi∗q δ]

1
0 ≥ [wq

i∗q
(0) + (t +

1) γqi∗q δ]
1
0. The inequality holds since [·]10 is a nondecreasing

function. Thus, wq
i∗q
(t) = 1, for all t ≥

⌈
(γδ)−1

⌉
≥ (γδ)−1 ≥

[1 − wq
i∗q
(0)][γqi∗q δ]

−1. Now define τ :=
⌈
(γδ)−1

⌉
and consider

any j ̸= i∗q and notice from (7) that uqj(w
q(t)) ≤ −δ < 0,∀t ≥

τ . Thus, wq
j (t) ≤ [wq

j (τ) − t γqj δ]
1
0,∀t ≥ τ. The inequality

again holds since [·]10 is non decreasing. So, wq
j (t) = 0, for

all t ≥ τ +
⌈
(γδ)−1

⌉
≥ τ + [γqj δ]

−1 ≥ τ + wq
j (τ)[γ

q
j δ]

−1. ■

Remark 5.4 (On the effect of step-size on convergence). By
Theorem 5.2, (8) converges to an equilibrium weight when

γqi > 0, ∀i ∈ A, ∀q ∈ Q. Thus agents can choose any
constant positive step size and guarantee convergence to a NE
of the weight game. Further inspection of Theorem 5.3 leads
to this interesting observation. Since δ−1 > 0, the individual
γqi ’s can be chosen in such a way that 0 < (γδ)

−1
< 1. Then

2
⌈
(γδ)−1

⌉
= 2. That is, by choosing a sufficiently large step

size and communicating with every other agent, the agents can
reach the NE in at most two time steps. •

In order to avoid all-to-all communication, it is possible to
adapt (8) introducing a consensus subroutine. In the next section,
we utilize this idea to handle decentralization together with
unknown rewards.

6. DISTRIBUTED TASK ALLOCATION

Finally, we provide a solution to Problem 3.5 (3). Recall that
in Section 5, each agent i ∈ A computes maxj ̸=i fj(q)w

q
j

using information from all other agents. Here, we introduce a
communication graph G := (A, E) with vertex set A. The arc
set E defines the connections between agents, with (i, j) ∈ E if
and only if i ∈ A can send information to j ∈ A. For the sake
of brevity, let d := diam(G).

Note that (from the proof of Theorem 5.2), if each agent
i ∈ A uses a convex combination of the max and second unique
max (i.e. λmaxj∈A fj(q) + (1− λ)max(2)j∈A fj(q), for some
λ ∈ (0, 1)) instead of maxj ̸=i fj(q)w

q
j , the outcome of the

dynamics (8) remains similar. This is because the aforemen-
tioned convex combination penalizes any non-dominating agent
to reduce the weight to zero and encourages a dominating agent
to increase its weight to one in a similar fashion to the utility
in (3). Moreover, this convex combination is the same quantity
for every agent and does not depend on the individual agent as
the penalizing term in the utility in (3) does. This, in turn, is
useful in providing a distributed PBRAG (d-PBRAG). Using a
communication graph, the following result gives a distributed
way to find the max and second unique max values.

Lemma 6.1 (Agreement on the two largest variables in a
network). Let G be a strongly connected graph and consider

Mq
i (t+ 1) = max

j∈N i

Mq
j (t), (10a)

Sq
i (t+ 1) = max(2)

{
{Sq

j (t)}j∈N i
,Mq

i (t), v
q
i

}
, (10b)

with initial condition Mq
i (0) = Sq

i (0) = vqi ∈ R≥0, ∀i ∈ A,
∀q ∈ Q. Then ∀ q ∈ Q and ∀ i ∈ A;

1) Mq
i (t) = max{vqj}j∈A, ∀ t ≥ d,

2) Sq
i (t) = max(2){vqj}j∈A, ∀ t ≥ 2 d.

Proof. We show this for an arbitrary but fixed q ∈ Q. Let
i∗q ∈ argmax{vqj}j∈A. Then, from (10a), Mq

i∗q
(t) = vqi∗q , ∀t ∈

Z≥0. Thus, ∀ i∗q ∈ argmax{vqj}j∈A, Mq
j (t) = vqi∗q , ∀j ∈ Ni∗q

,
∀t ≥ 1. Continuing this argument inductively proves Property 1
since G is strongly connected.

To show Property 2, we use Property 1. Now let i∗q ∈
argmax(2){vqj}j∈A. Then, from (10b), Sq

i∗q
(t) = vqi∗q , ∀t ≥ d.

Thus, similarly, ∀ i∗q ∈ argmax(2){vqj}j∈A, Sq
j (t) = vqi∗q ,

∀j ∈ Ni∗q
, ∀t ≥ d + 1. Again, continuing this argument proves

Property 2 since G is strongly connected. ■
To compute the gradient and update the weights wq

i simul-
taneously, we propose the following dynamics and discuss an

6

intuition behind it in the remark that follows.
wq

i (t+ 1)=
[
wq

i (t) + γqi (t)
(
zqi (t)−

1

2

(
Mq

i (t) + Sq
i (t)

))]1
0
,

(11a)

Mq
i (t+ 1)=σsw

(
max
j∈N i

Mq
j (t), e

q
i (t+ 1), t+ 1, T

)
, (11b)

Sq
i (t+ 1) = σsw

(
max(2)

{
{Sq

j (t)}j∈N i
,Mq

i (t), e
q
i (t)

}
,

eqi (t+ 1), t+ 1, T
)
, (11c)

eqi (t+ 1) = σsw

(
eqi (t), z

q
i (t+ 1), t+ 1, T

)
, (11d)

for some T ∈ R≥0 and where σsw is the switching function

σsw

(
m, z, t, T

)
:=

{
z, if t mod T = 0,

m, otherwise .
(12)

Remark 6.2 (d-PBRAG with agreement and periodic input
injection). Note that ∀ i ∈ A, ∀ q ∈ Q, the weight update
in (11a) uses the sequence {zqi (t)}t∈Z≥0

and a time-varying
step-size γqi (t) instead of fi(q) and a constant step-size γqi ;
respectively, as in (8). The periodic switching function σsw
ensures that eqi (t) holds the value zqi (t) for every T time-
steps. This in turn allows (11b) and (11c) to run an agreement
subroutine as (10) every T time-steps with vqi = zqi (kT), for
k ∈ Z≥0. Thus, at every time-step which is a multiple of T ,
each agent believes that its own value is the maximum and
corrects this belief over the next T − 1 time-steps. Then, as per
the discussion preceding Lemma 6.1, each agent i ∈ A uses the
convex combination 0.5(Mq

i (t)+S
q
i (t)) in (11a) of its estimated

max and second unique max value in lieu of maxj ̸=i fj(q)w
q
j .

This gives us a distributed way of assigning the task to the
correct agent while reducing the information being shared. •

Theorem 6.3 (Asymptotic behavior of d-PBRAG). Suppose
Assumptions 3.2 and 3.3 hold. Define

∆q :=
(
max
i∈A

fi(q)−min
i∈A

fi(q)
)
> 0, ∀q ∈ Q . (13)

Consider any ε ∈ (0, 1). Suppose ∀t ∈ Z≥0, γqi (t) = αq
i ,

with 0 < αq
i ≤ ε (2 d∆q)−1, ∀i ∈ A, ∀q ∈ Q. Next,

define α := mini∈A,q∈Q α
q
i , µq := 0.5 (max{fi(q)}i∈A −

max(2){fi(q)}i∈A), and
µ := (1− ν)min

q∈Q
µq > 0, (14)

with ν ∈ (0, 1). Further, suppose T > 2 d + (αµ)−1 + 1. Let
W(t) be the solution trajectory to (11) starting from W(0) ∈
[0, 1]n×m. Then ∃ τ(W(0)) ∈ Z≥0 such that ∀ t ≥ τ ,

1) wq
i (t) = 1 if i ∈ A dominates q ∈ Q;

2) wq
j (t) ≤ ε if j ∈ A is not dominating for q ∈ Q.

Thus C(W(t)) converges in finite number of time steps.

Proof. First note that the bounds on αq
i ’s and T are valid

because of Assumption 3.2. Then, we show the claims for an
arbitrary but fixed q ∈ Q.

Recall that because of Assumption 3.3, ∃ τ0 ∈ Z≥0 such that
∀t, t′ ≥ τ0, zqi (t)− 0.5 (zqi (t)+ zqj (t

′)) < ∆q , ∀ i, j ∈ A. More-
over τ0 can be chosen such that zqi∗q (t)− 0.5 (zqi∗q (t) + zqj (t

′)) ≥
(1− ν)µq > 0, for any ν ∈ (0, 1), if i∗q ∈ argmaxi∈A fi(q) and
∀j ∈ A such that j /∈ argmaxi∈A fi(q).

Now consider any i∗q ∈ argmaxi∈A fi(q) and any ν ∈ (0, 1).
Then from Remark 6.2, and the previous discussion, ∀t ≥ τ0,
αq
i∗q

(
zqi∗q (t)− 0.5

(
Mq

i∗q
(t) + Sq

i∗q
(t)

))
≥ αq

i (1− ν)µq ≥ αq
iµ .

This proves Property 1 of this theorem as αq
iµ > 0.

Next consider any j /∈ argmaxi∈A fi(q). Note from Re-
mark 6.2 that ∀t ≥ τ0 such that t ∈ {kT + 2d, · · · , 2kT − 1}
for some k ∈ Z≥0, wq

j (t) strictly decreases, since,
zqj (t)− 0.5(Mq

j (t) + Sq
j (t)) ≤ −(1− ν)µq < 0 .

Consider any t ≥ τ0 such that t ∈ {kT +2d, · · · , 2kT −1} with
k ∈ Z≥0. Then, since wq

j (kT + 2d− 1) ≤ 1,
wq

j (t) ≤ 1− ((t mod T)− 2d)αµ,

and hence because of the bound on T , wq
j (2kT−1) = 0. Finally,

consider any t ≥ τ0 such that t ∈ {kT, · · · , kT + 2d− 1} with
k ∈ Z≥0. Then, since wq

j (kT − 1) = 0 (from previous argu-
ments), we have wq

j (t) ≤ (t mod T)αq
i ∆

q . Thus combining
all these arguments proves Property 2.

The final claim follows from the previous ones and (4). ■

Note that the previous result does not guarantee that the
weights converge. This stems from the fact that at periodic times,
each agent believes that it gets the maximum reward for each
task. Moreover, the previous result needs information about the
limits of the converging sequences to provide bounds for the
step sizes and the period of input injection. This can be avoided
by allowing time-varying step sizes as stated next.

Theorem 6.4 (d-PBRAG converges to NE). Suppose Assump-
tions 3.2 and 3.3 hold. Let W(t) be the solution trajectory
of (11) from W(0) ∈ [0, 1]n×m, with T > 2 d + 1 and,

γqi (t) =

{
αq
i (k) > 0, if t ∈ {kT, · · · , kT + 2d− 1},
βq
i (k) > 0, if t ∈ {kT + 2d, · · · , 2kT − 1},

∀i ∈ A, ∀q ∈ Q, with k ∈ Z≥0. Further, ∀i ∈ A, ∀q ∈ Q; take
sequences αq

i (k) → 0 as k → ∞ and βq
i (k) → ∞ as k → ∞.

Then W(t) → W ∈ NE(GW) as t→ ∞.

Proof. From hypothesis, ∀ε > 0, ∃K ∈ Z≥0, such that
∀t ∈ {kT, · · · , kT+2d−1}, with k ≥ K, αq

i (t) ≤ ε (2 d∆q)−1,
with ∆q as in (13). Moreover, K can be chosen such that
∀t ∈ {kT + 2d, · · · , 2kT − 1}, with k ≥ K, T > 2d + ((1 −
ν)µmini∈A,q∈Q α

q
iβ

q
i (t))

−1 + 1 for any ν ∈ (0, 1) and with µ
as in (14). Then this result is a consequence of applying similar
arguments as in the proof of Theorem 6.3 and using (5). ■

We conclude this section by discussing some interesting
observations about the parameters in (11).

Remark 6.5 (On the implementation of d-PBRAG). Note that
even though diam(G) is an internal property of the communi-
cation graph G and requires some structural knowledge of the
same, the claims in Theorems 6.3 and 6.4 remain true if d is
replaced with n. This is because diam(G) ≤ n. Moreover, these
results can be extended to time-varying communication graphs
with periodic connectivity because the agreement subroutine
still works. Further, note that the conditions in Theorem 6.4
are only sufficient for convergence. In fact, βq

i (k) need not
grow unbounded, but then knowledge of converging reward
values are required for proper functioning of the algorithm. For
example, if µ is large, small values of βq

i (k) are sufficient to
guarantee convergence; but if µ is small then βq

i (k) values have
to be sufficiently large in order to guarantee that non-dominating
agents are not assigned the task. Finally, notice that in order for
the algorithm to work, each agent i ∈ A has to pass two values
(Mq

i (t), S
q
i (t)) for each task q ∈ Q to its neighbors at each time

step. This makes the local communication cost of this algorithm
of the order of O(m) per iteration time. •

7

TABLE I
APPROXIMATE fi(q) VALUES FOR SIMULATIONS

i ∈ A
q ∈ Q 1 2 3 4

1 0.4536 0.4407 0.2881 0.0055
2 0.7504 0.2228 0.0411 0.2801
3 0.7656 0.0987 0.1381 0.2491
4 0.3023 0.2211 0.3334 0.2462

i ∈ A
q ∈ Q 5 6 7 8

1 0.0049 0.2394 0.3152 0.2217
2 0.2374 0.0768 0.0852 0.1760
3 0.2969 0.1003 0.1471 0.6902
4 0.3033 0.4991 0.1231 0.5931

0 2 4 6 8 10

Time steps (t)

0

1

W
ei
gh
t
w

q 1
(t
)

q = 1

q = 2

q = 3

q = 4

q = 5

q = 6

q = 7

q = 8

0 2 4 6 8 10

Time steps (t)

0

1

W
ei
gh
t
w

q 2
(t
)

0 2 4 6 8 10

Time steps (t)

0

1

W
ei
gh
t
w

q 3
(t
)

0 2 4 6 8 10

Time steps (t)

0

1

W
ei
gh
t
w

q 4
(t
)

Fig. 1. PBRAG using (8) and large step size γ. Plots share a common legend.

7. SIMULATIONS

In this section, we verify our major claims and illustrate some
interesting features of our algorithms.
A. Fast convergence of PBRAG with large step-size
Here, we simulate n = 4 agents to optimally allocate m = 8
tasks with ri(q), ϕi(q) ∼ Unif[0, 1], ∀i ∈ A, q ∈ Q. In
particular, Table I gives the approximate values of fi(q), ∀i ∈ A,
q ∈ Q. For each q ∈ Q, the highlighted cell represents
maxi∈A fi(q).

We first verify the claim in Remark 5.4. Figure 1 shows the
solution evolution using (8) from an initial W(0) = 0. The
optimal partition as in Figure 1 is given as V1 = {2, 7}, V2 =
{4}, V3 = {1, 8}, V4 = {3, 5, 6}. Here, since the values of
fi ∈ [0, 1], γqi ∈ O(106) was required to make the solutions
converge in two time steps. For larger deviations in the values
of fi, much smaller values of γqi ’s can achieve similar effects.
B. Effect of constant step-size on d-PBRAG
Here, we deal with the claims in Theorem 6.3 for n = 8
agents optimally allocating m = 1 task. We take f1(1) = B,

0 250 500 750 1000 1250 1500 1750 2000

Time steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei
gh
t
w

1 i
(t
)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

0 250 500 750 1000 1250 1500 1750 2000

Time steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei
gh
t
w

1 i
(t
)

Fig. 2. d-PBRAG for unknown rewards with constant step-size using (11) on
cyclic communication graph. Step-size γq

i (t) and time-period T were chosen as
in Theorem 6.3 with different ε and ν = 0.1. The plots share a common legend.
(Top) ε = 0.9. (Bottom) ε = 0.3.

f2(1) = 0.9B, and fi(1) = 0.3B/i, ∀ i ∈ {3, · · · , 8},
with B = 1000. Thus agent 1 is the dominating agent. Fur-
ther, we consider an unknown reward structure with zqi (t) =
fi(q) + aqi cos(bqi t)exp(−c

q
i t), ∀i ∈ A, ∀q ∈ Q, where

aqi ∼ Unif[0, fi(q)], b
q
i ∼ Unif[0, 10], and cqi ∼ Unif[0, 1].

We set the communication graph G = (A, E) with E =
{(1, 2), (2, 3), (3, 4), (4, 1)}.

Figure 2 shows the solution evolution using (11) with constant
step-size from an initial W(0) = 0. It is interesting to note
from Figure 2 that if ε is large, then w1

1(t) reaches 1 faster,
but the weights of the non-dominating agents rise higher. On
the other hand if ε is small, then the rise in the weights of the
non-dominating agents is less but w1

1(t) reaches 1 slower. This
is because ε affects the choice of T as well.

C. d-PBRAG with time-varying step-sizes

Here, we simulate n = 4 agents optimally allocating m = 4
tasks. We take the unknown reward structure as in Section 7-B
with fi(q) as in Table I (we only consider the tasks for q ∈
{1, 2, 3, 4}). Further, we use the distributed approach using (11)
with time-varying step-sizes as described in Theorem 6.4. We
also set G as in Section 7-B.

Figure 3 shows the solution evolution using (11) from an
initial W(0) = 0. The optimal partition as in Figure 3 is given
as V1 = {2}, V2 = {4}, V3 = {1}, V4 = {3}. This is similar
to the observation in Section 7-A (restricted to q ∈ {1, 2, 3, 4}).
Further, notice from Figure 3 that the weights of agents 3 and 4
take longer time to settle than agents 1 and 2. In general,
the convergence rate of the algorithm depends on difficult-to-
characterize properties of the unknown reward sequences.

We compare our algorithm with the distributed Hungarian
algorithm in [5]. In order to incorporate the converging reward
sequence, we restart the algorithm every n3 time step (since it
was shown in [5] that the algorithm converges in O(n3) time
steps). In Figure 4 we show the evolution of agent 2 only (for
the sake of space). It can be seen that distributed Hungarian
keeps oscillating while d-PBRAG converges. The oscillations
could be an artifact of restarting the algorithm; but, to the best
of our knowledge, that is a reasonable way to incorporate new
information regarding the converging reward sequence.

8

0 200 400 600 800 1000

Time steps (t)

0

1

W
ei
gh
t
w

q 1
(t
)

q = 1 q = 2 q = 3 q = 4

0 200 400 600 800 1000

Time steps (t)

0

1

W
ei
gh
t
w

q 2
(t
)

0 200 400 600 800 1000

Time steps (t)

0

1

W
ei
gh
t
w

q 3
(t
)

0 200 400 600 800 1000

Time steps (t)

0

1

W
ei
gh
t
w

q 4
(t
)

Fig. 3. d-PBRAG for unknown rewards with time-varying step-size using (11)
on cyclic communication graph. The plots share a common legend.

q = 1 q = 2 q = 3 q = 4

0 200 400 600 800 1000

Time steps (t)

0

1

W
ei
gh
t
w

q 2
(t
)

Fig. 4. Distributed Hungarian implementation for the same scenario as in
Figure 3. Plot is shown for one agent only.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a game theoretic formulation of
an optimal task allocation problem for a group of agents. By
allowing agents to assign weights between zero and one for each
task, we relaxed the combinatorial nature of the problem. This
led to a partition and weight game, whose NE formed a superset
of the optimal task partition. Then, we provided a distributed
best-response projected gradient ascent by which convergence
to the NE of the weight game was guaranteed.

Future work will consider constraints on number of tasks for
each agent, and generalizing the setup to continuous space of
tasks and classes of tasks.

REFERENCES

[1] H. L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[2] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. . Smith, “Dynamic
vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1482–1504, 2011.

[3] A. Sadeghi and S. L. Smith, “Heterogeneous task allocation and sequencing
via decentralized large neighborhood search,” Unmanned Systems, vol. 5,
no. 02, pp. 79–95, 2017.

[4] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics, vol. 2, no. 1–2, p. 83–97, May 1955.

[5] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed
version of the Hungarian method for multirobot assignment,” IEEE Trans-
actions on Robotics, vol. 33, no. 4, pp. 932–947, 2017.

[6] J. Cerquides, A. Farinelli, P. Meseguer, and S. D. Sarvapali, “A tutorial
on optimization for multi-agent systems,” The Computer Journal, vol. 57,
no. 6, pp. 799–824, 2014.

[7] A. Prasad, S. Sundaram, and H. L. Choi, “Min-max tours for task allocation
to heterogeneous agents,” in IEEE Int. Conf. on Decision and Control,
2018, pp. 1706–1711.

[8] N. Rezazadeh and S. S. Kia, “Distributed strategy selection: A submodular
set function maximization approach,” Automatica, vol. 153, p. 111000,
2023.

[9] J. Vondrák, “Optimal approximation for the submodular welfare problem
in the value oracle model,” in ACM Symposium on Theory of Computing,
2008, pp. 67–74.

[10] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maximizing a monotone
submodular function subject to a matroid constraint,” SIAM Journal on
Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[11] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, p. 129–137, 1982.

[12] M. Santos, Y. Diaz-Mercado, and M. Egerstedt, “Coverage control for
multirobot teams with heterogeneous sensing capabilities,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 919–925, 2018.

[13] M. Santos and M. Egerstedt, “Coverage control for multi-robot teams
with heterogeneous sensing capabilities using limited communications,”
in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2018, pp. 5313–
5319.

[14] J. Cortés, S. Martínez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 2, pp. 243–255, 2004.

[15] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing in a
stochastic time-varying environment,” in IEEE Int. Conf. on Decision and
Control, Paradise Island, Bahamas, Dec. 2004, pp. 3357–3363.

[16] H. Aziz, A. Pal, A. Pourmiri, F. Ramezani, and B. Sims, “Task allocation
using a team of robots,” vol. 3, no. 4, pp. 227–238, 2022.

[17] S. Leitner, “Emergent task allocation and incentives: An agent-based
model,” pp. 1–29, 2024.

[18] M. O. Afacan, “A task-allocation problem,” vol. 82, pp. 285–290, 2019.
[19] J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control and

potential games,” IEEE Transactions on Systems, Man, & Cybernetics.
Part B: Cybernetics, vol. 39, no. 6, p. 1393–1407, 2009.

[20] M. Zhu and S. Martínez, “Distributed coverage games for energy-aware
mobile sensor networks,” SIAM Journal on Control and Optimization,
vol. 51, no. 1, pp. 1–27, 2013.

[21] R. Konda, R. Chandan, D. Grimsman, and J. R. Marden, “Balancing
asymptotic and transient efficiency guarantees in set covering games,” in
American Control Conference, 2022, pp. 4416–4421.

[22] P. Frihauf, M. Krstic, and T. Basar, “Nash equilibrium seeking for games
with non-quadratic payoffs,” in IEEE Int. Conf. on Decision and Control,
Atlanta, USA, December 2010, pp. 881–886.

[23] J. Koshal, A. Nedić, and U. V. Shanbhag, “A gossip algorithm for
aggregative games on graphs,” in IEEE Int. Conf. on Decision and Control,
2012, pp. 4840–4845.

[24] M. Ye and G. Hu, “Distributed Nash equilibrium seeking by a consensus
based approach,” IEEE Transactions on Automatic Control, vol. 62, no. 9,
pp. 4811–4818, 2017.

[25] F. Salehisadaghiani and L. Pavel, “Distributed Nash equilibrium seeking:
A gossip-based algorithm,” Automatica, vol. 72, pp. 209–216, 2016.

[26] A. C. Chapman, R. A. Micillo, R. Kota, and N. R. Jennings, “Decentralized
dynamic task allocation using overlapping potential games,” The Computer
Journal, vol. 53, no. 9, pp. 1462–1477, 2010.

[27] Y. Narahari, Game theory and mechanism design. World Scientific, 2014,
vol. 4.

[28] R. Diestel, “Graph theory,” Graduate Texts in Mathematics, pp. 173–207,
2017.

[29] S. Kim and M. Egerstedt, “Heterogeneous coverage control with mobility-
based operating regions,” in American Control Conference, 2022.

	Introduction
	Preliminaries
	Notations
	Game theory
	Graph theory

	Problem Formulation
	On Nash Equilibria and Optimal Partitions
	Best Response Projected Gradient Ascent
	Distributed Task Allocation
	Simulations
	Fast convergence of PBRAG with large step-size
	Effect of constant step-size on d-PBRAG
	d-PBRAG with time-varying step-sizes

	Conclusion and Future Work
	References

