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Abstract

This work introduces a distributed algorithm for finding least square (LS) so-

lutions of linear algebraic equations (LAEs). Unlike the methods studied in

the literature, we assume that our distributed algorithm has limited computa-

tion power and network bandwidth, in the sense that each agent can only solve

small-scale LAEs and the group of agents can only exchange messages of small

size at a time. Our algorithm contains two layers of nested loops. A part of

the solution is updated by a consensus algorithm in the inner loop, while an

scheduling sequence in the outer loop decides which part of the solution to be

updated. By appealing to the alternating projection theorem, we prove conver-

gence of the proposed algorithm when the scheduling sequence is both spanning

and periodic. The accuracy of our algorithm is verified through a numerical

example.

Keywords: Distributed algorithm, linear algebraic equations, least square

solutions.

1. Introduction

The solution to linear algebraic equations (LAEs) finds application in di-

verse scientific and engineering disciplines such as physics, chemistry, financial
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modeling, and network analysis. A particular area of interest concerns data-

driven modeling and regression, which typically employ very large-dimensional,

data-dependent LAEs for prediction. As the data can be spread over multiple

nodes in a network, an efficient, privacy preserving, and dependable algorithm

becomes crucial in the training of such models. In order to ensure this, the

associated distributed algorithms must account for the limitations in compu-

tation and communication of the digital devices involved in the process. This

work aims to contribute to the body of work that provides a solution to these

problems under various communication and computation constraints.

Literature review: Solving LAEs in a distributed manner has many appli-

cations, such as distributed spectrum estimation [? ] and linear and nonlin-

ear (kernel-based) regression in predictive learning [1]. The distributed solu-

tion to LAEs has been considered in various forms in the literature starting

with [2, 3, 4], see also the survey [5]. The main assumption of these early works

is that each node in the network has access to a full set of rows of the coefficient

matrix of LAEs and the corresponding entries in the independent vector. In

this way, one can find discrete-time iterations [2, 3, 6] that produce an exact

solution to the LAEs for underdetermined systems. However, these solutions

struggle when there is an excessive number of constraints, which motivates the

distributed optimization approach of [7], employing continuous flows to solve

the problem approximately. Subsequently, [8] follows along these lines and fur-

ther characterizes the step-size under which the discretization of one such type

of continuous-time algorithms converges. More recently, leveraging continuous-

time algorithms and dynamic consensus [9], the work [10] considers a special

LAE problem in which each agent in the network has access to a full coefficient

matrix and an independent vector of its own, which are then summed up to

produce a global LAE. Convergence is established under general assumptions of

time-varying, undirected graph connectivity.

However, the aforementioned distributed algorithms require the exchange

of large-size messages, proportional to the solution’s dimension. This presents

a challenge due to limited bandwidth for communication among agents. Con-
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sequently, these algorithms are not “scalable”, in the sense that adding more

agents does not facilitate solving LAEs with an excessive number of decision

variables. Recent studies [11, 12] focus on scalable continuous-time and discrete-

time algorithms. These works propose double-layered networks comprising

higher-level aggregators coordinating with locally clustered agents. Each agent

controls and broadcasts a state variable proportional to its known coefficient

submatrix dimension. By achieving consensus and conservation through intra-

cluster agent-agent and inter-cluster aggregator-aggregator communications, dis-

tributed algorithms are devised for agents to cooperatively achieve least square

(LS) solutions to LAEs. We note that in these works, the number of required

agents needs to be of the order of the total number of coefficients.

Statement of contributions: In this study, we present a novel scalable discrete-

time distributed algorithm for determining the LS solutions of overdetermined

LAEs. In addition to the usual assumption that each agent only knows some

rows of coefficient matrix, our approach introduces communication “schedul-

ing” to address the challenges of limited computation power and communica-

tion bandwidth. In contrast with previous work, even under the constraint of

limited bandwidth, the number of agents in our algorithm does not need to

be of the order of the total number of coefficients. Our algorithm consists of

two integrated loops. An inner loop employs a consensus algorithm, which effi-

ciently solves small-scale LAEs by the multi-agent network. The solution of the

small-scale LAEs is then used to update a portion (a subset of the entries) of

the guessed solution, determined by a set-valued scheduling sequence designed

for the outer loop algorithm. By leveraging the alternating projection theorem,

we establish convergence of our algorithm under the conditions that the outer

loop’s scheduling sequence is both spanning and periodic.

The rest of the paper is organized as follows. In Section 2, we provide the

motivation behind considering limited computation power and network band-

width, and we formally define the problem. Section 3 introduces the distributed

algorithms proposed in this study. The convergence analysis of the algorithms is

presented in Section 4. In Section 5, we provide a numerical example to demon-
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strate the algorithms’ effectiveness. Finally, Section 6 concludes the paper by

summarizing the findings and offering insights into potential avenues for future

research.

Notation. Let R,N be the set of all real numbers and positive integers, respec-

tively. For any l,m, n ∈ N, define the sets L := {1, . . . , l},M := {1, . . . ,m},N :=

{1, . . . , n}. For any countable set Ω, let |Ω| denote its cardinality. For any vec-

tor x ∈ Rn and matrix A ∈ Rm×n, let ∥x∥, ∥A∥ denote the 2-norm and induced

norm, respectively. The range and kernel spaces of a matrix A ∈ Rm×n is de-

noted by im(A), ker(A), respectively. The orthogonal space of a vector subspace

X is denoted by X⊥. An undirected graph G = (V,E) with l vertices consists

of a vertex set V = L and edge set E ⊂ L× L such that (i, j) ∈ E if and only if

(j, i) ∈ E. A path is a sequence of vertices connected by edges, and the graph G

is connected if there is a path between any pair of vertices. For any i ∈ V , the

set of neighbors of i is Ni := {j ∈ V : (i, j) ∈ E} and the degree is di := |Ni|.

2. Motivation and problem formulation

Consider the following problem of solving the linear algebraic equation (LAE)

Ax = b, (1)

where A ∈ Rm×n, b ∈ Rm are the known data, x ∈ Rn is the variable to be

determined. Throughout this work, we assume A to be full column rank so

that the problem (1) has a unique least squares (LS) solution, which can be

equivalently characterized by the following lemma.

Lemma 1. The following statements regarding x∗ ∈ Rn are equivalent:

1. x∗ is the LS solution of the LAE (1).

2. x∗ = argminx ∥Ax− b∥2.

3. x∗ = A†b, where (·)† denotes pseudo-inverse.

4. (Ax∗ − b) ⊥ im(A).
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The motivation to account for limited computational power and network

bandwidth stems from the challenge posed by large-scale problems with high-

dimensional LS solutions. Note that, the direct computation of the LS solution

using the formula in the third statement of Lemma 1 becomes impractical due

to the burden associated with the computation of the pseudo-inverse A†. Hence,

this consideration is crucial in developing efficient algorithms. Distributed algo-

rithms, such as those proposed in [3, 13], offer a potential solution to this issue

by distributing the workload among multiple agents in a network. However,

these algorithms still require the exchange of full solution guesses among the

agents. Given that the LS solution vector x is of dimension n, an efficient infor-

mation exchange requires a network bandwidth of at least size n. Our objective

is to propose a scalable distributed algorithm, where the number of agents only

scales with respect to m, so that it solves LAEs of arbitrary values of m and

n without the demand to increase the computational power of each agent or

expand the network bandwidth for information exchange. More precisely,

Problem 1 (Scalable Solution to LAE). For some m∗, n∗ ∈ N, let A ∈

Rm×n, b ∈ Rm with m > m∗, n > n∗ be given. Assume the following holds

for a group of l agents that interact over a connected, undirected communica-

tion graph G:

• (Limited data) Each agents knows at most a subset of m∗ rows of A and

the corresponding elements in b;

• (Limited computation power) Each agent can only compute the inverse of

r × r square matrices (if invertible) for r ≤ m∗;

• (Limited communication bandwidth) The i-th agent can broadcast and re-

ceive messages of size up to n∗ to and from its neighbors in Ni at each

time.

• (Number of agents) It holds that l = O(m).

Design a distributed algorithm which finds the LS solution of (1) by this group

of agents.
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3. The distributed algorithm

Before introducing our algorithm, we define a few more notions that are

needed. For a given matrix A ∈ Rm×n, a vector b ∈ Rm and any sets Sr ⊆

M, Sc ⊆ N, denote ASr,Sc
∈ R|Sr|×|Sc| to be the submatrix of A consisting of

elements on the rows indexed by Sr and columns indexed by Sc, bSr
∈ R|Sr|

to be the subvector of b consisting of elements on the rows indexed by Sr. In

particular, if Sr = M or Sc = N then the notation ASr,Sc is abbreviated by A:,Sc

or ASr,:, respectively.

Let {Σ(i)}i∈L be a partition of M; i.e., ∪i∈LΣ(i) = M and Σ(i) ∩ Σ(j) = ∅

for each pair of agents i ̸= j. Also, let Ω : N ⇒ N be a set-valued map and

define its complement Ωc : N ⇒ N by Ωc(i) := N\Ω(i). Naturally, the elements

in Ω(t),Ωc(t) are enumerated by the order of elements in N. We therefore define

a permutation matrix P (t) = [pjk(t)] ∈ Rn×n by

pjk(t) =


1, if k is the j-th element in Ω(t),

1, if k is the (j − |Ω(t)|)-th element in Ωc(t),

0, otherwise.

(2)

Informally speaking, our algorithm consists of two nested loops or layers. In

the outer layer, the scheduling sequence Ω(t) tells which part of the solution the

agents need to update. In the inner layer, the agents run a consensus algorithm

based on their known data AΣ(i),:, bΣ(i), in order to reach consensus on that part

of the solution.

The following assumption is needed for our algorithm to be implementable.

Assumption 1. It holds that all Σ(i) are non-empty and

|Σ(i)| ≤ m∗, ∀i ∈ L, (3)

|Ω(t)| ≤ n∗

2
, ∀t ∈ N. (4)

The inequality (3) can be satisfied by setting l sufficiently large. The se-

quence Ω(t) can also be easily made to satisfy the inequality (4).

Our distributed algorithm can be stated as follows.
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[
x
(i)

Ω(t)

y
(i)

Ω(t)

]
← F−1

i,t

[
dix

(i)

Ω(t)
+
∑

j∈Ni
y
(j)

Ω(t)
+A⊤

Σ(i),Ω(t)

(
bΣ(i)−AΣ(i),Ωc(t)x

(i)

Ωc(t)

)
−Σj∈Ni

x
(j)

Ω(t)
+diy

(i)

Ω(t)

]
.

(5)

F−1
i,t := − 1

4d2i

[
I|Ω(t)|
I|Ω(t)|

]
A⊤

Σ(i),Ω(t)

(
I|Σ(i)| +

1

2di
AΣ(i),Ω(t)A

⊤
Σ(i),Ω(t)

)−1

AΣ(i),Ω(t)

[
I|Ω(t)| I|Ω(t)|

]
+

1

2di

[
I|Ω(t)| −I|Ω(t)|
I|Ω(t)| I|Ω(t)|

]
(6)

1. Initially, let all the agents start with a common initial guess x(i)(0) =

x(0) ∈ Rn and arbitrary auxiliary state vectors y(i)(0) ∈ Rn for all i ∈ L.

2. Outer loop. For the t-th iteration, the i-th agent, i ∈ L, does the following:

2.1) Inner loop. For the s-th iteration, update x
(i)
Ω(t), y

(i)
Ω(t) according to

rule (5), where F−1
i,t is given by (6).

2.2) Repeat Step 2.1) for s ∈ N until x
(i)
Ω(t), y

(i)
Ω(t) converge for all i ∈ L.

3. Repeat Step 2) for t ∈ N until x(i), y(i) converge for all i ∈ L.

We justify that under Assumption 1, our algorithm meets all the constraints

in Problem 1. First of all, the i-th agent only knows AΣ(i),:, bΣ(i),:. This ensures

local data privacy and, in the view of (3), the constraint of limited data is met.

Meanwhile, in the state update rule (5), the computational complexity mainly

arises from the inversion in the computation of the matrix F−1
i,t , which has a

dimension of |Σ(i)| × |Σ(i)|. Again, our algorithm satisfies the constraint of

limited computation power. Moreover, the state update rule (5) only requires a

subset of the state variables, namely x
(j)
Ω(t) and y

(j)
Ω(t) ∈ R|Ω(t)|, to be broadcast.

By referring to (4), we can ascertain that our algorithm also satisfies the con-

straint of limited network bandwidth. Lastly, l only needs to satisfy (3); we do

not need l = O(mn). As a result, the proposed distributed algorithm is scalable

for solving LAEs of arbitrary dimension.

The sentences “until . . . converge” in Step 2.1) and Step 3) mean to the

accuracy of the algorithm as in Section 4. In practice, “convergence” is ob-
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tained by taking sufficiently many iterations in both inner and outer loops, or

the iterations are stopped when the updated values are observed to have neg-

ligible changes. Nevertheless, the latter method requires a varying number of

iterations, which becomes challenging in the distributed setup as the agents may

terminate the loop at different time.

We also remark that our approach can be reminiscent of the Gauss-Seidel

method [2, Chapter 2.4], where the partial update of the solution can be in-

terpreted as a type of scheduling. However, when the Gauss-Seidel method is

directly implemented in a distributed manner [14], it requires the exchange of

messages whose dimension equals to the dimension of the solution. This violates

our constraint of limited communication bandwidth.

4. Convergence analysis

Denote the solution computed by the i-th agent after the t-th iteration of

the outer loop by x(i)(t). These values are the output of the inner loop, which

is essentially the consensus algorithm from [13], aiming to find a LS solution

z ∈ R|Ω(t)| of the LAE
AΣ(1),Ω(t)

AΣ(2),Ω(t)

...
AΣ(l),Ω(t)

 z =


bΣ(1)−AΣ(1),Ωc(t)x

(1)

Ωc(t)
(t−1)

bΣ(2)−AΣ(2),Ωc(t)x
(2)

Ωc(t)
(t−1)

...
bΣ(l)−AΣ(l),Ωc(t)x

(l)

Ωc(t)
(t−1)

 . (7)

In Section 4.1, we first show a convergence result under the assumption

of perfect consensus from each inner loop. We then analyze the impact of

inconsistencies among agents produced by an early termination of the inner

loop in Section 4.2.

4.1. Convergence guarantees under perfect consensus

If perfect consensus is achieved after each inner loop, then

x(1)(t) = x(2)(t) = · · · = x(l)(t) =: x(t), ∀t ∈ N. (8)

We first give an iterative property of the sequence of x(t) in this case.
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Lemma 2. Define a sequence of matrices Π : N→ Rn×n by

Π(t) := P⊤(t)
[

0|Ω(t)|×|Ω(t)| −A†
:,Ω(t)

A:,Ωc(t)

0|Ωc(t)|×|Ω(t)| I|Ωc(t)|

]
P (t), (9)

where P (t) is defined by (2). If x∗ ∈ Rn is the unique LS solution of (1) and

the agents reach perfect consensus for each inner loop in the sense of (8), then

x(t)− x∗ = Π(t)(x(t− 1)− x∗) (10)

for all t ∈ N.

Proof. Substitute (8) into (7) and re-arrange the rows, we obtain an equivalent

expression

A:,Ω(t)z = b−A:,Ωc(t)xΩc(t)(t− 1). (11)

By [13, Theorem 1], the consensus state is the LS solution of (7), which is

used to update xΩ(t)(t). According to the second statement in Lemma 1,

∥A:,Ω(t)xΩ(t)(t) + A:,Ωc(t)xΩc(t)(t − 1) − b∥ is minimized. Now denote δ(t) :=

x(t)− x∗. We have

∥A:,Ω(t)xΩ(t)(t) +A:,Ωc(t)xΩc(t)(t− 1)− b∥2

= ∥A:,Ω(t)(x
∗
Ω(t) + δΩ(t)(t))

+A:,Ωc(t)(x
∗
Ωc(t) + δΩc(t)(t− 1))− b∥2

= ∥(Ax∗ − b) +A:,Ω(t)δΩ(t)(t) +A:,Ωc(t)δΩc(t)(t− 1)∥2

= ∥(Ax∗ − b)∥2 + ∥A:,Ω(t)δΩ(t)(t) +A:,Ωc(t)δΩc(t)(t− 1)∥2,

where the last equality follows from the last statement of Lemma 1 and the

Pythagorean Theorem. As a result, δ(t) is updated in each iteration of the outer

loop such that ∥A:,Ω(t)δΩ(t)(t) + A:,Ωc(t)δΩc(t)(t − 1)∥ is minimized. According

to the equivalence between the second and third statements of Lemma 1, we

have an explicit formula for δΩ(t)(t):

δΩ(t)(t) = −A†
:,Ω(t)A:,Ωc(t)δΩc(t)(t− 1). (12)

Meanwhile, it follows from the property of the permutation matrix P (t) that[
δΩ(t)(t)

δΩc(t)(t)

]
= P (t)δ(t). Thus, we obtain δ(t) = Π(t)δ(t − 1), which proves

Lemma 2.
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Lemma 2 immediately leads to the following convergence result:

Corollary 1. Let x∗ ∈ Rn be the unique LS solution of (1) and suppose that

agents reach perfect consensus after each inner loop in the sense of (8). If the

following property on the joint spectral radius of the matrices (9) holds

ρΠ := lim sup
t→∞

|λmax(Π(t)Π(t− 1) · · ·Π(1))| 1t < 1, (13)

then x(t) converges to x∗ exponentially with rate ln ρΠ.

We would like to emphasize that Corollary 1 is implicit, since the condition

(13) depends on the specific matrix A, which cannot be determined a priori.

However, it is worth noting that each Π(t) matrix only possesses two eigenvalues,

namely 0 and 1. As a result, the joint spectrum of the system must lie within

the closed unit disk. In order to exclude eigenvalues residing on the unit circle,

intuitively, one would require the sequence Ω to be “fully-mixed”. We hence

propose the following two assumptions on Ω.

Assumption 2 (Spanning set). It holds that

lim
N→∞

N⋃
t=1

Ω(t) = N.

Assumption 3 (Periodicity). There exists T ∈ N such that

Ω(t+ T ) = Ω(t) ∀t ∈ N.

We remark here that under Assumption 3, Assumption 2 is equivalent to

T⋃
i=1

Ω(i) = N. (14)

The next theorem shows a surprising result, which is that under Assump-

tions 2 and 3, convergence is always guaranteed regardless of the value of A

(although the convergence rate depends on A), so that our algorithm can al-

ways find the LS solution of (1).

Theorem 1. Let x∗ ∈ Rn be the unique LS solution of (1) and suppose the

agents reach perfect consensus for each inner loop in the sense of (8). Then

under Assumptions 2 and 3, x(t) converges to x∗ exponentially.
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Proof. Denote v(t) := Aδ(t), where recall δ(t) := x(t) − x∗. We conclude from

(12) that

v(t) =
[
A:,Ω(t) A:,Ωc(t)

] [
δΩ(t)(t)

δΩc(t)(t)

]
=

[
A:,Ω(t) A:,Ωc(t)

] [
0|Ω(t)|×|Ω(t)| −A†

:,Ω(t)
A:,Ωc(t)

0|Ωc(t)|×|Ω(t)| I|Ωc(t)|

] [
δΩ(t)(t−1)

δΩc(t)(t−1)

]
=

(
Im −A:,Ω(t)A

†
:,Ω(t)

)
A:,Ωc(t)δΩc(t)(t− 1)

=
(
Im −A:,Ω(t)A

†
:,Ω(t)

) [
A:,Ω(t) A:,Ωc(t)

] [
δΩ(t)(t−1)

δΩc(t)(t−1)

]
=

(
Im −A:,Ω(t)A

†
:,Ω(t)

)
v(t− 1),

where we have also used the property of pseudo-inverse such thatA:,Ω(t)A
†
:,Ω(t)A:,Ω(t) =

A:,Ω(t) for the second last equality. Note that Im − A:,Ω(t)A
†
:,Ω(t) is the or-

thogonal projection operator onto im(A:,Ω(t))
⊥. Also, since im(A:,Ω(t))

⊥ =

ker((A:,Ω(t))
⊤), We conclude that

v(t) = Pker((A:,Ω(t))⊤)v(t− 1), (15)

where PX denotes the projection onto the vector space X . As a result, the

sequence v is generated by alternating projections. Because of Assumption 3,

we conclude from [15] that limt→∞ v(t) = PYv(0), where

Y =

T⋂
t=1

ker((A:,Ω(t))
⊤) = im

([
A:,Ω(1) A:,Ω(2) ··· A:,Ω(T )

])⊥
.

We can further conclude that Y = im(A)⊥ by the equivalent condition (14)

for Assumption 2. Now, recall v(0) = Aδ(0) ∈ im(A). Thus, PYv(0) =

Pim(A)⊥v(0) = 0. In other words, limt→∞ v(t) = 0. Because A is full col-

umn rank, this also implies that limt→∞ δ(t) = 0. We have hence shown the

convergence of x(t) to x∗. To further show exponential convergence, note that

it follows from (12) and Assumption 3 that

δ(kT ) = (Π(T − 1) · · ·Π(1)Π(0))
k
δ(0)

for any k ∈ N. Hence, we must have |λmax(Π(T − 1) · · ·Π(1)Π(0))| < 1, or
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otherwise it contradicts with the convergence of the sequence δ. We thus have

ρΠ = lim sup
t→∞

|λmax(Π(t)Π(t− 1) · · ·Π(0))| 1t

= lim sup
k→∞

|λmax(Π(T − 1) · · ·Π(1)Π(0))| k
kT < 1.

By Corollary 1, x(t) converges to x∗ exponentially.

4.2. Practical convergence result

Although it can be implied by [13, Theorem 1] that the convergence of our

inner loop is exponential, in practice, consensus is never perfect due to the finite

terminal condition. Errors between x(i)(t) and the LS solution of (7) exist, and

we certainly do not wish such errors to accumulate per iteration of the outer

loop. This can be ensured by the following practical convergence result.

Theorem 2. Let x∗ ∈ Rn be the unique LS solution of (1), and z∗(t) ∈ R|Ω(t)|

be the LS solution of (7) at the t-th iteration of the outer loop. Suppose there

exists ϵ̄ > 0 such that the inner loop always terminates with ∥x(i)
Ω(t)(t)−z

∗(t)∥ ≤ ϵ̄

for all i ∈ L, t ∈ N. Then, there exists b, c > 0, λ ∈ (0, 1) such that

∥x(i)(t)− x∗∥ ≤ cλt∥x(0)− x∗∥+ bϵ̄

for all i ∈ L, t ∈ N.

Proof. Let z : N→ Rn be constructed by

z(0) = x(0), z(t) = P⊤(t)
[

z∗(t)
zΩc(t)(t−1)

]
,

where z∗(t) is the LS square solution of (7). Denote ϵ(i)(t) := x(i)(t)− z(t). We

have

ϵ(i)(0) = 0, ϵ(i)(t) = P⊤(t)

[
x
(i)

Ω(t)
(t)−z∗(t)

ϵ
(i)

Ωc(t)
(t−1)

]
.

Because of the assumption that ∥x(i)
Ω(t)(t)−z∗(t)∥ ≤ ϵ̄ and the fact that P (t) is a

permutation matrix, we conclude that each element of ϵ(i)(t) must be bounded

in the interval [−ϵ̄, ϵ̄] and hence ∥ϵ(i)(t)∥ ≤ ϵ̄
√
n for all t ∈ N.
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We now show that the sequence z admits an input-to-state-like property. By

re-arrange the rows of (7) and substitute x(i)(t) = z(t) + ϵ(i)(t), we obtain

A:,Ω(t)z = b−A:,Ωc(t)z(t− 1)− u(t), (16)

where u(t) is a re-arrangement of the vector
AΣ(1),Ωc(t)ϵ

(1)

Ωc(t)
(t−1)

AΣ(2),Ωc(t)ϵ
(2)

Ωc(t)
(t−1)

...
AΣ(l),Ωc(t)ϵ

(l)

Ωc(t)
(t−1)

 .

In particular, we have

∥u(t)∥ =

√√√√ l∑
i=1

∥AΣ(i),Ωc(t)ϵ
(i)
Ωc(t)(t− 1)∥2

≤ ϵ̄

√√√√n

l∑
i=1

∥AΣ(i),Ωc(t)∥2. (17)

Because the LS solution of (7) is z∗(t) = zΩ(t)(t), according to the second state-

ment in Lemma 1, ∥A:,Ω(t)zΩ(t)(t)+A:,Ωc(t)xΩc(t)(t−1)+u(t)−b∥ is minimized.

Now further denote δ(t) := z(t) − x∗. Similar to the proof of Lemma 2, we

conclude that this optimization problem is equivalent to minimizing

∥(Ax∗ − b) +A:,Ω(t)δΩ(t)(t) +A:,Ωc(t)δΩc(t)(t− 1) + u(t)∥,

which, according to the equivalence between the second and third statements of

Lemma 1, has an explicit formula

δΩ(t)(t) = −A†
:,Ω(t)

(
Ax∗ − b+A:,Ωc(t)δΩc(t)(t− 1) + u(t)

)
= −A†

:,Ω(t)A:,Ωc(t)δΩc(t)(t− 1)−A†
:,Ω(t)u(t).

Here, we have used the last statement of Lemma 1 such that A†
:,Ω(t)(Ax∗−b) = 0.
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As a result, we conclude that

δ(t) = P⊤(t)
[

δΩ(t)(t)

δΩc(t)(t)

]
= P⊤(t)

([
0|Ω(t)|×|Ω(t)| −A†

:,Ω(t)
A:,Ωc(t)

0|Ωc(t)|×|Ω(t)| I|Ωc(t)|

] [
δΩ(t)(t−1)

δΩc(t)(t−1)

]
−
[

A†
:,Ω(t)

0|Ωc(t)|

]
u(t)

)
= Π(t)δ(t− 1)− P⊤(t)

[
A†

:,Ω(t)

0|Ωc(t)|

]
u(t),

which gives a discrete-time linear time-varying (LTV) dynamics of δ with input

u. Now note that the sequence of matrices Π is periodic by Assumption 3,

and we have proven that 0 is exponentially stable for the unforced dynamics in

Theorem 1. Hence, this LTV system of δ is exponentially input-to-state stable

with respect to u; futhermore, because ∥u(t)∥ is bounded as in (17), there exist

c, b̃ > 0, λ ∈ (0, 1) such that ∥δ(t)∥ ≤ cλt∥δ(0)∥ + b̃ϵ̄ for all t ∈ N. Finally, we

conclude from triangle inequality that

∥x(i)(t)− x∗∥ ≤ ∥x(i)(t)− z(t)∥+ ∥z(t)− x∗(t)∥

≤ cλt∥δ(0)∥+ (b̃+
√
n)ϵ̄,

which proves Theorem 2 with b = b̃+
√
n.

5. Simulation

We consider a numerical example where the dimension of the LAE is given

by m = n = 20. Let there be 5 agents; that is, l = 5, such that they form a

circular communication network. In addition, the partition Σ and the scheduling

sequence Ω are designed such that

Σ(i) = {4i− 3, 4i− 2, 4i− 2, 4i} ∀i ∈ L

Ω(t) = {2mod (t, 10) + 1, 2mod (t, 10) + 2} ∀t ∈ N.

With this setup, Assumption 1 is satisfied with m∗ = n∗ = 4, and both As-

sumptions 2 and 3 hold.
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For a pair of randomly generated matrix and vector A, b, we consider four

scenarios such that the inner loop of our algorithm terminates at smax iterations,

smax = 10, 20, 50, 100. The outer loop ends when ∥x(i)(t) − x(i)(t − 1)∥ ≤

ϵtol∥x(i)(t − 1)∥ for all i ∈ L, where ϵtol = 10−6. Although the incremental

relative error, ∥x(i)(t)−x(i)(t−1)∥
∥x(i)(t−1)∥ depends on agents, in practice we observe that

all of them are very close and hence we use i = 1 to represent the incremental

relative error. The plots of incremental relative error versus t are shown in

Figure 1, together with the function β(t) := ρtΠ, where we recall the joint spectral

radius ρΠ given by (13) in Lemma 2 is the convergence rate for perfect consensus.

We observe that with larger smax (50 and 100), the plots of incremental relative

errors become parallel to the plot of β(t), indicating that the convergence rate

becomes almost identical to the case of perfect consensus. Meanwhile, with

larger smax, the total number of outer loop iterations is also bounded if the

terminal condition is based on a threshold on the incremental relative error.

In contrast to the incremental relative error, the true relative error is given

by ∥x(i)−x∗∥
∥x∗∥ . Similar to the incremental relative error, the true relative error is

also insensitive to different agents. The total number of outer loop iterations,

computation time and true relative error for these four scenarios are recorded

in Table 1. While the computation time increases, the true relative error signifi-

cantly reduces with respect to smax. We remark here that our current algorithm

is merely a coarse prototype implemented in MATLAB, where there is still a huge

room for improving efficiency.

smax Outer loop iterations Time (ms) True relative error

10 3370 438 62.9%

20 11960 2884 19.2%

50 8690 4922 0.17%

100 8460 9210 0.00847%

Table 1: Results for different inner loop terminal conditions.
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Figure 1: Plots of incremental relative error vs. outer loop iteration for different inner loop

terminal conditions.

6. Discussion and conclusion

In this study, we introduced a novel scalable distributed algorithm tailored

for solving LAEs while considering limitations in computational power and net-

work bandwidth. Additionally, we conducted convergence analysis, addressing

both the ideal scenario with perfect consensus and the practical scenario with

errors.

There are several potential extensions to our study of the distributed algo-

rithm that could be explored. First, we can investigate relaxing Assumptions 2

and 3 on the scheduling sequence Ω. It may be possible to consider a weaker

condition based on quasi-periodicity [16], which could still be sufficient for the

convergence of the algorithm. However, it is important to note that such an

extension might add minimal practical value, as the scheduling sequence can

be customized for the algorithm and made simple. On the other hand, de-

termining which scheduling sequence Ω can expedite the convergence rate is

both theoretically and practically intriguing. As highlighted in Corollary 1, the

convergence rate of the algorithm is related to properties of the matrix A. Ex-

ploring and identifying the specific properties of A that impact the convergence

rate is an important task. Developing techniques to compute or estimate these
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properties within the distributed framework presents an additional challenging

research problem. Lastly, instead of sequentially updating parts of the solution

in the outer loop, an alternative direction of research could involve designing

a distributed algorithm where each agent updates a distinct part of the solu-

tion. This approach would require non-trivial analysis to ensure convergence

and efficiency.
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