
DistributedOnlineOptimization for
Multi-AgentOptimalTransport

Vishaal Krishnan a , Sonia Martínez c

aSchool of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138 USA.

bLund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden.

cDepartment of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla CA 92093 USA.

Abstract

We propose a scalable, distributed algorithm for the optimal transport of large-scale multi-agent systems. We formulate the
problem as one of steering the collective towards a target probability measure while minimizing the total cost of transport,
with the additional constraint of distributed implementation. Using optimal transport theory, we realize the solution as an
iterative transport based on a stochastic proximal descent scheme. At each stage of the transport, the agents implement an
online, distributed primal-dual algorithm to obtain local estimates of the Kantorovich potential for optimal transport from
the current distribution of the collective to the target distribution. Using these estimates as their local objective functions,
the agents then implement the transport by stochastic proximal descent. This two-step process is carried out recursively by
the agents to converge asymptotically to the target distribution. We rigorously establish the underlying theoretical framework
and convergence of the algorithm and test its behavior in numerical experiments.
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1 Introduction

We consider the problem of designing distributed feed-
back control laws for optimally transporting a group of
agents from an initial configuration, given by a proba-
bility measure µ0, to a target configuration specified by
a probability measure µ∗ over a domain Ω. Such a prob-
lem of transport of multi-agent collectives arises natu-
rally in various settings, from the modeling of cell pop-
ulations in biology, to engineering applications of cover-
age control and deployment in robotics and mobile sens-
ing networks [9,12,26]. As these scenarios involve phys-
ical transport of resources, there is an associated cost
of transport owing to energy considerations. Optimal
transport theory [11, 34], which deals with the problem
of rearranging probability measures while minimizing
a cost of transport, presents an appropriate theoretical
framework for the problem. Another consideration in the
multi-agent setting is the scalability of implementation
when the size of the collective increases, which underlines
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the need for distributed algorithms [9]. This need is fur-
ther exacerbated by limitations on sensing and commu-
nication typically present in these systems, whereby in-
dividual agents may only be able to sense/communicate
with their spatial neighbors. However, existing formu-
lations of the optimal transport problem result in solu-
tions wherein the optimal transport routes for the indi-
vidual agents depend on the distribution of the entire
multi-agent system, which is a bottleneck for distributed
implementation. The primary challenge in algorithm de-
sign, therefore, is in obtaining scalable distributed algo-
rithms for large-scale implementation of optimal trans-
port, which constitutes the aim of this paper.

Related work. Transport problems in robotics and mo-
bile sensing network applications arise in the form of cov-
erage control and deployment objectives, where the un-
derlying goal is to steer a group of robots towards a tar-
get coverage profile over a spatial region. Among the ap-
proaches to the coverage control and deployment prob-
lem for large-scale multi-agent systems are transport by
synthesis of Markov transition matrices [2, 4, 14], the
use of continuum models [17, 21, 37] for transport, and
coverage control by parameter tuning and/or boundary
control of the reaction-advection-diffusion PDE [16,36].
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We note, however, that despite the potential for the ap-
plication of optimal transport ideas to the multi-agent
setting, as seen from the works [3,20,33,38], a truly dis-
tributed formulation of optimal transport has remained
open. While our preliminary work [22] was an attempt in
this direction, we develop a rigorous theoretical frame-
work for the design of distributed optimal transport al-
gorithms in this paper. These works, however, present
significant limitations either because they require cen-
tralized offline planning [20], or because of a need for
costly computation and information exchange between
agents [3]. This serves as a strong motivation for the de-
velopment of a distributed iterative algorithm for opti-
mal transport in this paper.

The applications of optimal transport in image process-
ing and various engineering domains has motivated a
search for efficient computational methods for the op-
timal transport problem [13, 24, 29]. Optimal transport
from continuous to discrete probability distributions has
been studied under the name of semi-discrete optimal
transport, with connections to the problem of optimal
quantization of probability measures, in [8]. While com-
putational approaches to optimal transport often work
with the static, Monge or Kantorovich formulations of
the problem, investigations involving dynamical formu-
lations was initiated by [5], where the authors recast
the L2 Monge-Kantorovich mass transfer problem in
a fluid mechanics framework. This largely owes to no-
tion of displacement interpolation originally introduced
in [25]. [28] and [6] are other works in this vein. The
problem of optimal transport was also explored from
a stochastic control perspective in [1, 10, 27]. However,
there has remained a gap in this literature with regard
to distributed computation of optimal transport, which
arises as a rather stringent constraint in multi-agent
transport scenarios.

Contributions. In this work, we propose and investi-
gate large-scale optimal transport of multi-agent collec-
tives based on a scalable, distributed online optimiza-
tion. Working with a reduction of the Kantorovich du-
ality for metric costs conformal to the Euclidean metric,
we note that the Kantorovich potential is almost every-
where differentiable and obtain a bound on the norm of
its gradient. We then obtain an stochastic process for op-
timal iterative transport of probability measures based
on Kantorovich duality, showing it to be equivalent to
optimal transport along geodesics, and establish conver-
gence of the sequence of probability measures generated
by the process to the target probability measure with
respect to the topology of weak convergence. We pro-
pose a distributed primal-dual algorithm to be imple-
mented online by the agents to obtain local estimates of
the Kantorovich potential, which are then used as local
objectives in a proximal algorithm for transport. The
paper contributes not only to the literature on computa-
tional methods for the optimal transport problem, but
also presents a novel scalable, distributed approach to

multi-agent optimal transport addressing a longstand-
ing concern in the research on multi-agent systems.

Paper outline. In Section 2, we introduce the nota-
tion and mathematical preliminaries underlying the re-
sults presented in the rest of the paper. Our goal in
this paper is to design an iterative transport process re-
lying entirely on distributed computation for the opti-
mal transport of a multi-agent system towards a target
probability measure. To this end, we first design in Sec-
tion 3 an iterative process for optimally transporting a
probability measure onto a target measure with respect
to an underlying transport cost on the spatial domain.
We then obtain in Section 4 a distributed multi-agent
optimal transport algorithm via a discretization of the
transport process introduced in Section 3, which is then
followed by an investigation of the behavior of the algo-
rithm in numerical simulations. We then conclude with
a brief summary of our results in Section 5.

2 Mathematical preliminaries

2.1 Notation

We first briefly introduce the notation adopted in the
rest of the paper. We use | · | to denote the Euclidean
norm in Rd, for any d ∈ N (when d = 1, this denotes the
absolute value). We use ∥ · ∥ for function space norms.
The gradient operator in Rd is represented as ∇. For
any Ω ⊆ Rd, ∂Ω ⊆ Rd denotes its boundary, Ω̄ =
Ω ∪ ∂Ω its closure, and Ω̊ = Ω \ ∂Ω its interior with re-
spect to the standard Euclidean topology. We denote by
(Ω, µ) the set Ω with an underlying measure µ. Given
any x ∈ Ω ⊂ Rd, the set Br(x) is the closed d-ball of
radius r > 0, centered at x. Furthermore, we denote
by Bcr(x) the closed d-ball of radius r, centered at x,
with respect to the metric c. We denote by P(Ω) the
space of probability measures over Ω. For a measurable
mapping T : Ω → Θ, where Ω and Θ are measurable,
we denote by T#µ ∈ P(Θ) the pushforward measure
of µ ∈ P(Ω) and we have T#µ(B) = µ(T −1(B)), for all
measurable B ⊆ Θ. We use ⟨f, g⟩ to represent the inner
product of functions f, g : Ω → R w.r.t. the Lebesgue
measure vol, given by ⟨f, g⟩ =

∫
Ω
fg dvol. The set Lip(Ω)

is the space of Lipschitz continuous functions on Ω. We
denote by Lp(Ω, µ) the space of p-integrable (measur-
able) functions on Ω, where the integration is carried out
with the underlying measure µ (the Lebesgue measure
is implied when µ is not specified), and by W 1,p(Ω, µ)
the space of p-integrable (measurable) functions with p-
integrable (measurable) derivatives.

2.2 Monge and Kantorovich formulations of optimal
transport

Let Ω ⊆ Rd be a compact, convex domain, and
let µ, ν ∈ P(Ω) be absolutely continuous probability
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measures on Ω. Let c : Ω × Ω → R≥0 be a continuous
function such that for x, y ∈ Ω, c(x, y) is the unit cost
of transport from x to y. In the Monge (deterministic)
formulation, the optimal cost of transporting the proba-
bility measure µ onto ν is defined as the infimum of the
transport cost over the set of maps for which ν is ob-
tained as the pushforward measure of µ, as given below:

CM (µ, ν) = inf
T :Ω→Ω
T#µ=ν

∫
Ω

c(x, T (x))dµ(x). (1)

The Kantorovich (probabilistic) formulation relaxes the
Monge formulation (1) by defining the optimal cost of
transporting the probability measure µ onto ν as the in-
fimum of the transport cost over the set of joint proba-
bility measures Π(µ, ν) ⊂ P(Ω × Ω), for which µ and ν
are the respective marginals over Ω, as given below:

CK(µ, ν) = inf
π∈Π(µ,ν)

∫
Ω×Ω

c(x, y) dπ(x, y). (2)

SinceΩ is a compact subset of Rd and c is continuous over
Ω×Ω, it follows that the Kantorovich problem admits a
solution [32]. Furthermore, the Kantorovich formulation
can be shown [32] to be a relaxation of the Monge formu-
lation, i.e. CM (µ, ν) = CK(µ, ν), and we hereafter de-
note by C(µ, ν) = CM (µ, ν) = CK(µ, ν). Furthermore,
the Kantorovich formulation (2) admits the following
dual formulation 1 :

C(µ, ν) = sup
ϕ,ψ∈L1(Ω)

∫
Ω

ϕ(x)dµ(x) +

∫
Ω

ψ(y)dν(y)

s.t ϕ(x) + ψ(y) ≤ c(x, y).
(3)

The maximizers of the above dual formulation are pairs
of functions (ϕ, ψ) called Kantorovich potentials. They
occur at the boundary of the inequality constraint,
thereby satisfying:

ϕ(x) = inf
y∈Ω

(c(x, y)− ψ(y)) ,

ψ(y) = inf
z∈Ω

(c(z, y)− ϕ(z)) .
(4)

We refer to (ϕ, ψ) defined above as a c-conjugate pair,
and write ψ = ϕc to denote that ψ is the conjugate of ϕ.

3 Optimal iterative transport of measures

We first briefly describe the setting for the multi-agent
optimal transport problem addressed in this paper. We
consider a compact and convex domain Ω ⊂ Rd across

1 Strong duality holds for the Kantorovich formulation
(c.f. Theorem 5.10 in [34]).

which N agents are initially independently and identi-
cally distributed according to an absolutely continuous
probability measure µ0 ∈ P(Ω), i.e., the initial agent po-
sitions {x1(0), . . . , xN (0)} are independently generated
as xi(0) ∼ µ0 for any i ∈ {1, . . . , N}. Our goal in this pa-
per is to design an iterative transport process to steer the
agents towards an absolutely continuous target probabil-
ity measure µ∗ ∈ P(Ω), while minimizing the net cost of
transport measured with respect to an underlying met-
ric c on Ω. In particular, we restrict the transport cost c
to the class of Riemannian metrics conformal to the Eu-
clidean distance, as stated in the following assumption:

Assumption 1 (Conformal metric) Let c : Ω×Ω→
R≥0 be a distance function on Ω conformal to the Eu-
clidean distance (with a strictly positive conformal fac-
tor ξ ∈ C1(Ω)), i.e., for any x, y ∈ Ω, c(x, y) is given by:

c(x, y) = inf
γ∈C1([0,1];Ω);
γ(0)=x,γ(1)=y

∫ 1

0

ξ(γ(t)) | γ̇(t)|d t. (5)

The restriction to a conformal metric affords us the flex-
ibility to penalize transport through certain regions of
the domain relative to other regions via the conformal
factor, therefore allowing for the possibility of model-
ing physical obstacles and uneven terrain in real envi-
ronments with relative ease. The following lemma es-
tablishes a reduction of the Kantorovich duality (3) for
conformal metric costs:

Lemma 1 (Local Lipschitz bound) Let c : Ω × Ω →
R≥0 be a metric onΩ conformal to the Euclidean distance,
with a strictly positive conformal factor ξ ∈ C1(Ω).
The conjugate of the Kantorovich potential in (4) satis-
fies ϕc = −ϕ and |ϕ(x)−ϕ(y)| ≤ c(x, y) for all x, y ∈ Ω.
Furthermore, the Kantorovich potential is differentiable
almost everywhere in Ω̊, with |∇ϕ| ≤ ξ almost every-
where.

Proof sketch.

It follows from Lemma 1 that for absolutely continuous
probability measures µ, µ∗ ∈ P (Ω), the optimal trans-
port cost for the transport of µ onto µ∗ can be written
as:

C(µ, µ∗) = sup
ϕ∈W 1,∞(Ω,µ)

∫
Ω

ϕ

(
1− dµ∗

dµ

)
dµ,

s.t. |∇ϕ| ≤ ξ, µ− a.e. in Ω,
(6)

where dµ∗/dµ is the Radon-Nikodym derivative.
WithGϕ(x) =

[
|∇ϕ(x)|2 − ξ(x)2

]
/2, we can rewrite the

constraint in Problem (6) as Gϕ ≤ 0, µ–a.e. in Ω. Fur-
thermore, we haveGϕ ≥ −ξ2/2 for any ϕ ∈W 1,∞(Ω, µ).
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Therefore, it follows that Gϕ ∈ L∞(Ω, µ), and the La-
grange multiplier corresponding to the constraint Gϕ ≤
0 then belongs toL∞(Ω, µ)∗, the dual space ofL∞(Ω, µ).
Since L∞(Ω, µ)∗ is isomorphic [15] to ba(Ω, µ) 2 , we get
that λ(Gϕ) = 1

2

∫
Ω

(
|∇ϕ|2 − |ξ|2

)
ρdλ. The Lagrangian

functional L : W 1,∞(Ω, µ) × L∞(Ω, µ)∗≥0 → R can now
be defined as follows:

L(ϕ, λ) = −
∫
Ω

ϕ

(
1− dµ∗

dµ

)
dµ + λ(Gϕ).

The following theorem establishes the existence of a
(global) maximizer for Problem (6), also called a Kan-
torovich potential, and characterizes the saddle points
of the Lagrangian L:

Theorem 1 (First-order optimality conditions)
Let µ, µ∗ ∈ P(Ω) be absolutely continuous probability
measures with densities ρ, ρ∗ ∈ L1(Ω). Problem (6)
has a global maximizer ϕµ→µ∗ ∈ W 1,∞(Ω, µ). The
Lagrangian L has a saddle point (ϕµ→µ∗ , λµ→µ∗) ∈
W 1,∞(Ω, µ) × L1(Ω, µ)≥0. Moreover, (ϕµ→µ∗ , λµ→µ∗)
satisfies the first-order optimality conditions:

(1) Stationarity: The saddle point (ϕµ→µ∗ , λµ→µ∗)
weakly satisfies the Poisson equation,

−1

ρ
∇ · (ρλµ→µ∗∇ϕµ→µ∗) = 1− ρ∗

ρ
, µ− a.e. in Ω,

ρλµ→µ∗∇ϕµ→µ∗ · n = 0 on ∂Ω,

where n is the outward normal to the boundary ∂Ω.

(2) Feasibility: λµ→µ∗ ≥ 0 and |∇ϕµ→µ∗ | ≤ ξ, µ–a.e.
in Ω.

(3) Complementary slackness: λµ→µ∗(|∇ϕµ→µ∗ |−ξ) =
0, µ–a.e. in Ω.

Proof sketch.

Having characterized the Kantorovich potential via the
saddle points of the Lagrangian L, in what follows we
devise a stochastic process to achieve iterative optimal
transport to the target measure µ∗. We obtain a for-
mulation of optimal transport of probability measures
in which the net transport of a given initial probability
measure µ0 onto a target probability measure µ∗ is car-
ried out by a stochastic process. However, we first require
the following lemma which establishes that the optimal
transport can be decomposed into multiple stages:

Lemma 2 (Decomposition of optimal transport
cost) Given atomless probability measures µ, µ∗ ∈ P(Ω),

2 The space of bounded finitely additive measures on Ω that
are absolutely continuous w.r.t. µ.

the cost of optimal transport from µ to µ∗ satisfies:

C(µ, µ∗) = min
ν∈P(Ω)

C(µ, ν) + C(ν, µ∗).

Proof sketch.

Lemma 2 allows for the decomposition of optimal trans-
port into an iterative process. In particular, we are inter-
ested in those decompositions for which the individual
stage costs are upper bounded by an ϵ > 0, as estab-
lished by the following theorem:

Theorem 2 (Stochastic process for optimal iter-
ative transport) Let ϵ > 0 and let {X(k)}k∈N be a
stochastic process with absolutely continuous marginals
µk ∈ P(Ω) (i.e., X(k) ∼ µk for every k ∈ N) such that
for (measurable) B ⊆ Ω the following holds

P [X(k + 1) ∈ B | X(k) = x] =
ℓ
(
B ∩Mϵ

µk
(x)

)
ℓ
(
Mϵ

µk
(x)

) (7)

with the setMϵ
µ(x) = argminz∈Bc

ϵ (x)
c(x, z)+ϕµ→µ∗(z),

where and ℓ denotes the arclength (or induced Lebesgue)
measure. Then, the sequence {µk}k∈N satisfies

µk+1 ∈ arg min
ν∈P(Ω)

{C(µk, ν) + C(ν, µ∗),

s.t. C(µk, ν) ≤ ϵ} ,
(8)

and C(µk, µ∗)→ 0, as k →∞.

Proof sketch. (a) To see that process (7) achieves (8),
we note that... (b) Furthermore, to see that process (7)
achieves convergence C(µk, µ∗)→ 0, we note that...

Some comments on Theorem 2 are in order. We note that
for a given µ ∈ P(Ω), at any x ∈ Ω, the set of minimizers
Mϵ

µ(x) is the segment of the geodesic from x to its im-
age Tµ→µ∗(x) (the optimal transport map from µ to µ∗)
that lies within the ϵ c-ball centered at x. The update
of the stochastic process involves uniformly sampling
from this set. This is to account for the physical limi-
tations arising from the multi-agent setting wherein the
agents cannot take arbitrarily large steps. Furthermore,
we note that the resulting iterative process opens the
door for feedback-based implementations, applicable to
Model Predictive Control and tracking time-varying µ∗.

4 Multi-agent implementation

4.1 Multi-agent optimal transport algorithm

We now obtain an implementable algorithm for multi-
agent transport by the stochastic process (7), via a dis-
cretization of the Kantorovich potential. At the culmi-
nation of the previous section, it becomes evident that
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while the process (7) achieves optimal iterative trans-
port of absolutely continuous measures, multi-agent sys-
tems are intrinsically represented by discrete measures,
whereby we are faced with the problem of obtaining an
appropriate discretization and an implementable algo-
rithm for the transport process. To this end, we first
discretize Problem (6) onto a Voronoi partition gen-
erated by the positions of the agents and devising a
primal-dual algorithm to solve the discretized problem.
We then note that the primal-dual algorithm for the
multi-agent system is Laplacian-based, thereby being in-
trinsically distributed in nature, i.e., requiring communi-
cation only between immediate neighbors on the Delau-
nay graph corresponding to the Voronoi partition. This
crucial fact enables scalable large-scale implementation
of multi-agent optimal transport. In what follows, we
first develop the underlying structure for a discretization
of Problem (6), followed by the disctributed primal-dual
algorithm.

Let {xi(0)}Ni=1 be the positions of the N agents, dis-
tributed independently and identically according to a
probability measure µ0. The idea is to transport the
agents by the iterative process (7) to obtain {xi(k)}Ni=1 at
any time k. Let µ̂N (k) = 1

N

∑N
i=1 δxi(k) be the empirical

measure generated by the agents {xi(k)}Ni=1 at time k.
To this end, we formulate a (finite) N -dimensional dis-
tributed optimization to be implemented by the agents
to obtain local estimates of the Kantorovich poten-
tial. We approximate the true Kantorovich potential
by a Φd : N × Ω → R generated by an (finite) N -
dimensional vector ϕ(k) = (ϕ1(k), . . . , ϕN (k)) ∈ RN ,
such that Φd(k, xi(k)) = ϕi(k) for i ∈ {1, . . . , N}
and Φd(k, x) for x ∈ Ω \ {x1(k), . . . , xN (k)} is de-
fined by a suitable multivariate interpolation. In
particular, let {Vi(k)}Ni=1 be the Voronoi partition
of Ω generated by {x1(k), . . . , xN (k)} w.r.t. the met-
ric c, and Φd =

∑N
i=1 ϕ

Vi(k) (decomposed into a
sum of N functions ϕVi(k) with supports Vi(k)). We
assume that at time k, the agents i, j correspond-
ing to neighboring cells Vi(k) and Vj(k) are con-
nected by an edge, which defines a connected graph
G(k) =

(
{xi(k)}Ni=1, E(k)

)
(where E(k) is the edge set

of the graph G(k) at time k).

Dropping the index k (as is clear from context), the fi-
nite dimensional approximation of the Kantorovich du-
ality (6) for the transport between µ̂N and µ∗, restricted
to the graph G, is given by:

max
(ϕ1,...,ϕN )

N∑
i=1

(
1

N
· ϕi − Eµ∗ [ϕVi ]

)
s.t. |ϕi − ϕj | ≤ c(xi, xj), ∀(i, j) ∈ E.

(9)

We call (9) a restriction of (6) to the graph G because
we only impose the constraint |ϕi − ϕj | ≤ c(xi, xj) on
neighbors i, j on the graph.

We solve the optimization problem (9) by a primal-dual
algorithm, and its solution is used to update the agent
positions by (7). We takeΦd here to be a simple function,
such that ϕVi(x) = ϕi for x ∈ Vi. The Lagrangian for the
problem (9), with Φd a simple function and c(xi, xj) =
cij , is given by:

Ld =−
N∑
i=1

ϕi
[
1

N
− µ∗(Vi)

]

+
1

2

N∑
i=1

∑
j∈Ni

λij

[∣∣ϕi − ϕj∣∣2 − c2ij] ,
and the primal-dual algorithm (with step size τ) is
given by (for i ∈ {1, . . . , N} and j ∈ Ni):

ϕi(l + 1) = ϕi(l)− τ
∑
j∈Ni

λij(l)
(
ϕi(l)− ϕj(l)

)
+

(
1

N
− µ∗(Vi)

)
,

λij(l + 1) = max

{
0, λij(l) + τ

[
1

2

∣∣ϕi(l)− ϕj(l)∣∣2 − c2ij]} .
(10)

The term
∑
j∈Ni

λij(l)
(
ϕi(l)− ϕj(l)

)
in (10) is

the action of the weighted Laplacian matrix (with
weights λij(l)) on ϕ(l). We note from the structure
of the above algorithm that it renders itself to a dis-
tributed implementation by the agents, where agent i
uses information from its neighbors j ∈ Ni to update ϕi
and {λij}j∈Ni

.

At the end of every step xi(k) 7→ xi(k+1) from (7), the
agent i assigns ϕi ← Φdk(xi(k+1)) as the initial condition
for the primal algorithm (10) at the time step k + 1 of
the transport. Moreover, we are interested in an online
implementation of the transport, in that the agents do
not wait for convergence of the distributed primal-dual
algorithm but carry out n iterations of it for every update
step (7), as outlined formally in the algorithm below.

Remark 1 (Optimize-then-discretize vs discretize-
then-optimize) It can be seen that the key ingredient
of the multi-agent optimal transport Algorithm 1 is the
distributed computation by the agents of the (discretized)
Kantorovich potential which is the maximizer in (6).
This can be achieved either via a discretization of the
PDE characterizing the first-order optimality condition
for the Kantorovich potential, namely the optimize-then-
discretize approach, or by first discretizing the infinite-
dimensional optimization problem (6) over a partition
(e.g., Voronoi) of the domain and then solving the finite-
dimensional optimization problem resulting from the dis-
cretization to directly obtain the discretized Kantorovich
potential, the latter being the discretize-then-optimize
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Algorithm 1 Primal-dual based multi-agent optimal
transport
Input: Target measure µ∗, Transport
cost c(x, y), Bound on step size ϵ, Time step τ
For each agent i at time instant k of transport:
1: Obtain: Positions xj(k) of neighbors within com-

munication/sensing radius r (r ≤ diam(Ω), large
enough to cover Voronoi neighbors)

2: Compute: Voronoi cell Vi(k), Mass of cell µ∗(Vi(k)),
Voronoi neighbors Ni(k)

3: Initialize: ϕi ← Φdk−1(xi(k)), λij ← λij(k − 1)

(with Φd0 = 0, λij(0) = 0)
4: Implement n iterations of primal-dual algo-

rithm (10) (synchronously, in communication with
neighbors j ∈ Ni) to obtain ϕi(k), λij(k)

5: Communicate with neighbors j ∈ Ni to ob-
tain ϕj(k), construct local estimate of Φdk by multi-
variate interpolation

6: Implement transport step (7) with local estimate
of Φdk (which approximates ϕµk→µ∗)

approach. In this paper we have first laid the theoreti-
cal framework for the infinite-dimensional Kantorovich
problem, which in principle represents the N →∞ limit.
This allows for multi-agent algorithm design by either
approach. It is worth noting that while the distributed
primal-dual algorithm (10) is presented as solving the
discretized finite-dimensional optimization problem (9),
it can equivalently be viewed as computing the discretized
solution of the PDE characterizing the first-order op-
timality in Theorem 1. In the limits N → ∞ of the
number of agents and n→∞ of the number of iterations
of the primal-dual algorithm, i.e. as the discretization
more closely approximates the Kantorovich potential, we
expect the two approaches to be equivalent, although this
analysis is outside the scope of this paper.

The primal-dual algorithm is scalable with respect to the
number of agents, wherein the agents are only required
to communicate with their spatial (Voronoi) neighbors,
as seen from (10). Voronoi partition-based distributed
algorithms have been widely developed in the literature
and scalable implementations exist [9]. Complexity of
internal iterations is explicitly controlled by the number
of agentsN , the number of iterations n of the distributed
primal-dual algorithm (10) and computing µ∗(Vi) across
the Voronoi partition by the agents. The runtime of the
outer optimization is controlled by the distance between
µ0 and µ∗, the bound ϵ on the transport step size and
the conformal factor ξ, while every agent incurs a cost
to implement the optimization involved in the transport
step that is distributed across the agents.

4.2 Numerical experiments

We now present numerical results for multi-agent opti-
mal transport in R2, based on the the stochastic pro-
cess (7) (with c being the Euclidean metric and ϵ = 0.02),

where the local estimates of the Kantorovich potential
are computed by the distributed online algorithm (10)
with a step size τ = 1, as outlined in Algorithm 1.

We chose as the target distribution the histogram of i.i.d.
samples of a multimodal, bivariate Gaussian distribution
(shown in grayscale in Figure 1), and N = 100 agents
for the transport. Figure 1 shows the agents along with
the corresponding Voronoi partition of the domain, at
three different stages (time instants k = 0, 50, 100, 300)
during the course of their transport. We observe that the
agents are transported towards the target probability
measure and that a quantization of the target measure
is obtained. This is clarified further in Figure 2, as de-
scribed below. As we had noted in the previous section,
there exists a fundamental trade-off between optimality
and an online implementation of the distributed optimal
transport. We sought to investigate the extent of this
trade-off in simulation by running multiple iterations n
of the primal-dual algorithm (10) for every iteration of
the transport (7). The underlying rationale is that the
distributed computation is many times faster than the
transport. Figure 2 shows the rate of convergence (w.r.t.
the variance in target mass µ∗(Vi) across the partition)
for n = 1, 10. The randomness in Figure 2 (as seen by
the variation across trials and the 95% confidence inter-
vals) is partly due to the fact that the same initial distri-
bution µ0 results in different samples across the trials,
and the fact that the transport step (7) doesn’t yield a
unique minimizer but the agents are allowed to sample
any one of the minimizers within an ϵ-ball. The numeri-
cal experiments were implemented in MATLAB R2023b
on an Intel(R) Xeon(R) Platinum 8375C 2.90GHz CPU
with 16GB of RAM. The average runtime across 10 in-
dependent runs of the experiment, for k = 400 steps of
the transport with N = 100 agents, was 9.9s. The av-
erage runtime for n = 20 iterations of the distributed
online primal-dual algorithm was 0.015s.

5 Conclusion

We proposed a scalable, distributed iterative proxi-
mal point algorithm for large-scale optimal transport
of multi-agent collectives. We obtained a dynamical
formulation of optimal transport of agents, for metric
transport costs that are conformal to the Euclidean dis-
tance. We proposed a distributed primal-dual algorithm
to be implemented by the agents to obtain local esti-
mates of the Kantorovich potential, which are then used
to implement the multi-agent optimal transport. We
studied the behavior of the transport in simulation and
investigated the suboptimality of the online implemen-
tation. The analytic characterization of the extent of
the trade-off between optimality and the online nature
of the implementation is left for future work.
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Fig. 1. Positions of agents at three different stages (time instants k = 0, 50, 100, 300) of transport by Algorithm 1, i.e., the
iterative process (7) with local estimates of Kantorovich potential supplied by (10) (with n = 1 iterations of the primal-dual
algorithm (10) for every transport step (10); Target probability measure shown in grayscale with a darker shade indicating a
region of higher target density; The plots show convergence in time of the agents to full coverage of the target coverage profile
(represented by the target probability distribution).
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Fig. 2. Variance in target mass µ∗(Vi) across the partition
vs time for iteration steps n = 1, 10 of the primal-dual algo-
rithm (10) for every transport step (7). The plot shows the
(empirical) mean along with 95% confidence bounds of the
variance of µ∗(Vi) from 10 trials for each n from the same
initial condition.
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A Proofs of Lemmas

A.1 Proof of Lemma 1

(i) From (4), we have:

ϕ(x) = inf
y∈Ω

(
c(x, y)− inf

z∈Ω
(c(z, y)− ϕ(z))

)
= inf
y∈Ω

sup
z∈Ω

(
c(x, y)− c(z, y) + ϕ(z)

)
≥ inf
y∈Ω

(
c(x, y)− c(z, y) + ϕ(z)

)
= inf
y∈Ω

(
c(x, y)− c(z, y)

)
+ ϕ(z)

≥ −c(x, z) + ϕ(z),

where we have used the fact that c is a metric
to obtain the final inequality (for any y, we have
c(x, y)− c(z, y) = c(x, y)− c(y, z) ≥ −c(x, z), which im-
plies that infy∈Ω (c(x, y)− c(z, y)) ≥ −c(x, z)). More-
over, since the above inequality holds for any x, z ∈ Ω,
we have |ϕ(x)− ϕ(z)| ≤ c(x, z).

Now, when |ϕ(x) − ϕ(y)| ≤ c(x, y), we have that
−ϕ(x) ≤ c(x, y) − ϕ(y), which implies that −ϕ(x) ≤
infy (c(x, y)− ϕ(y)) = ϕc(x). Equivalently, we obtain
the relation ϕ(x) ≥ −ϕc(x).

Similarly, from (4) ϕc(x) = infy c(x, y)−ϕ(y), we obtain
ϕc(x) ≤ c(x, y) − ϕ(y). By setting y = x in the above
inequality, and using c(x, x) = 0 we get ϕ(x) ≤ −ϕc(x).
In all, we have that ϕc(x) = −ϕ(x) and |ϕ(x)− ϕ(y)| ≤
c(x, y).

(ii) We now have that ϕ is Lipschitz continuous in Ω
(since c is conformal to the Euclidean metric from and Ω
is compact). It follows from Rademacher’s theorem 3

that ϕ is differentiable almost everywhere in Ω. Also,
from Theorems 4 and 5, Chapter 5.8 in [18], we infer
that ϕ ∈ W 1,∞(Ω) and that its (a.e.) gradient ∇ϕ is
equal to its weak gradient almost everywhere in Ω.

For any minimizing curve γ ∈ C1([0, 1]; Ω) of (5), we
have

lim
h→0+

c(γ(h), γ(0))

h
= lim
h→0+

1

h

∫ h

0

ξ(γ(t)) | γ̇(t)|d t

= ξ(γ(0)) |γ̇(0)|

Furthermore, note that for any ψ ∈ C1(Ω) for which

3 Rademacher’s Theorem [23]: Let U ⊂ Rd be open and
bounded, and f : U → Rm be locally Lipschitz continuous
in U . Then f is differentiable at almost every x ∈ U .

|ψ(x)− ψ(y)| ≤ c(x, y) for all x, y ∈ Ω, we get

|∇ψ(γ(0)) · γ̇(0)| =
∣∣∣∣ ddhψ(γ(h))

∣∣∣∣
h=0

∣∣∣∣
= lim
h→0+

|ψ(γ(h))− ψ(γ(0))|
h

≤ lim
h→0+

c(γ(h), γ(0))

h
= ξ(γ(0)) |γ̇(0)| .

Since the above bound holds for any minimizing curve
γ ∈ C1([0, 1]; Ω) of (5), it follows that |∇ψ(γ(0))| ≤
ξ(γ(0)). Now, applying the foregoing reasoning to the
pointwise gradient of ϕ ∈ W 1,∞(Ω) satisfying |ϕ(x) −
ϕ(y)| ≤ c(x, y) (which exists almost everywhere in Ω
and is equal to its weak gradient), we get that the weak
gradient (which we interchangeably denote as ∇ϕ) sat-
isfies |∇ϕ(x)| ≤ ξ(x) almost everywhere in Ω. The above
formal reasoning involved the use of a C1 test function
ψ to define the derivative and carrying that over to the
Lipschitz function ϕ wherever it is differentiable.

A.2 Proof of Lemma 2

From the Monge formulation (1), we have:

C(µ, µ∗) = inf
T∈T (Ω)
T#µ=µ

∗

∫
Ω

c(x, T (x)) dµ(x),

where T (Ω) is the set of measureable maps over Ω. For
any measurable map T : Ω → Ω such that T#µ0 = µ∗

and any x, z ∈ Ω, we have:

c(x, T (x)) ≤ c(x, z) + c(z, T (x)).

Moreover, we have:

c(x, T (x)) = inf
z∈Ω

c(x, z) + c(z, T (x)),

where the minimum is attained when z lies on the
minimum-length geodesic from x to T (x) (the existence
of minimum-length geodesics follows from the Hopf-
Rinow Theorem). Since the above holds for any x ∈ Ω,
it then follows that:

C(µ, µ∗) = inf
T∈T (Ω)
T#µ=µ

∗

∫
Ω

c(x, T (x)) dµ(x)

= inf
T∈T (Ω)
T#µ=µ

∗

∫
Ω

inf
z∈Ω

[c(x, z) + c(z, T (x))] dµ(x)

(a)
= inf

T∈T (Ω)
T#µ=µ

∗

inf
T̃∈T (Ω)

∫
Ω

[
c(x, T̃ (x)) + c(T̃ (x), T (x))

]
dµ(x)
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= inf
T∈T (Ω)
T#µ=µ

∗

inf
T̃∈T (Ω)

[∫
Ω

c(x, T̃ (x))dµ(x)

+

∫
Ω

c(x, T ◦ T̃−1(x))dT̃#µ(x)

]
= inf
T̃∈T (Ω)

[∫
Ω

c(x, T̃ (x))dµ(x)

+ inf
T∈T (Ω)
T#µ=µ

∗

∫
Ω

c(x, T ◦ T̃−1(x))dT̃#µ(x)



= inf
ν∈P(Ω)

 inf
T̃ (1)∈T (Ω)

T̃
(1)

#
µ=ν

∫
Ω

c(x, T̃ (1)(x))dµ(x)

+ inf
T̃ (2)∈T (Ω)

T̃
(2)

#
ν=µ∗

∫
Ω

c(x, T̃ (2)(x))dν(x)


= inf
ν∈P(Ω)

C(µ, ν) + C(ν, µ∗),

where the equality (a) follows from an application of
Theorem 3A in [30]. We note that there clearly exists
at least one minimizer ν above (the choices ν = µ∗ and
ν = µ trivially minimize the cost). We therefore conclude
that C(µ, µ∗) = minν∈P(Ω) C(µ, ν) + C(ν, µ∗).

B Proofs of Theorems

B.1 Proof of Theorem 1

(i) Existence of Kantorovich potential ϕ: We first rewrite
the Kantorovich duality (6) as

C(µ, µ∗) = − inf
ϕ∈W 1,∞(Ω,µ)

Eµ∗ [ϕ]− Eµ[ϕ],

s.t. |∇ϕ| ≤ ξ, µ− a.e.

We note that the objective functional above is such that
for any p ∈ R and any ϕ ∈W 1,∞(Ω, µ)with |∇ϕ| ≤ ξ, we
have−Eµ[ϕ+p]+Eµ∗ [ϕ+p] = −Eµ[ϕ]+Eµ∗ [ϕ]. Further-
more, the constraint is such that |∇(ϕ+ p)| = |∇ϕ| ≤ ξ.
It follows that the objective functional and constraint in
the above optimization problem are invariant to constant
vertical shifts ϕ 7→ ϕ+p. In particular, for ϕ 7→ ϕ−Eµ[ϕ],
we can rewrite the above as

C(µ, µ∗) = − inf
ϕ∈W 1,∞(Ω,µ)

Eµ∗ [ϕ]︸ ︷︷ ︸
≜Lµ∗ (ϕ)

,

s.t.
{

Eµ[ϕ] = 0,

|∇ϕ| ≤ ξ, µ− a.e.

To see the invariance under the transformation, recall
that the dual problem is given by

C(µ, µ∗) = sup
ϕ∈W 1,∞(Ω,µ)

∫
Ω

ϕ

(
1− dµ∗

dµ

)
dµ,

s.t. |∇ϕ| ≤ ξ, µ− a.e. in Ω,

which, for absolutely continuous probability measures
µ, µ∗ ∈ P(Ω), we can rewrite as

C(µ, µ∗) = sup
ϕ∈W 1,∞(Ω,µ)

J(ϕ) ≜ Eµ[ϕ]− Eµ∗ [ϕ],

s.t. |∇ϕ| ≤ ξ, µ− a.e. in Ω.

Let ψ = ϕ − Eµ[ϕ]. First see that ϕ ∈ W 1,∞(Ω, µ), if
and only if ψ ∈ W 1,∞(Ω, µ). The objective function,
evaluated at ψ, is given by

J(ψ) = Eµ[ψ]− Eµ∗ [ψ]

= Eµ[ϕ− Eµ[ϕ]]− Eµ∗ [ϕ− Eµ[ϕ]]
= Eµ[ϕ]− Eµ[Eµ[ϕ]]− Eµ∗ [ϕ] + Eµ∗ [Eµ[ϕ]]
= Eµ[ϕ]− Eµ∗ [ϕ]− Eµ[Eµ[ϕ]] + Eµ∗ [Eµ[ϕ]]

Observe that Eµ[Eµ[ϕ]] = Eµ∗ [Eµ[ϕ]] = Eµ[ϕ] as µ and
µ∗ are probability measures. Therefore, it follows that

J(ψ) = Eµ[ϕ]− Eµ∗ [ϕ] = J(ϕ)

Furthermore, note that ∇ψ = ∇(ϕ − Eµ[ϕ]) = ∇ϕ −
∇ (Eµ[ϕ]) = ∇ϕ, since ∇ (Eµ[ϕ]) = 0 (this is due to the
fact that Eµ[ϕ] =

∫
Ω
ϕ(x)dµ(x), the average value of ϕ

over Ω, is a constant w.r.t x ∈ Ω).

Note that L(Ω, µ) =
{
ϕ ∈W 1,∞(Ω, µ) | Eµ[ϕ] = 0,

|∇ϕ| ≤ ξ, µ− a.e.} is closed, convex and bounded.
Boundedness of L(Ω, µ) follows from the compactness
of Y = ∪ϕ∈L(Ω,µ)ϕ(Ω) which implies that there exists
an M ∈ R≥0 such that Y ⊂ BM (0). It follows that for
any ϕ ∈ L(Ω, µ), we have ∥|ϕ|∥L∞(Ω,µ) ≤ M . More-
over, we have ∥|∇ϕ|∥L∞(Ω,µ) ≤ ∥|ξ|∥L∞(Ω,µ). There-
fore, ∥ϕ∥W 1,∞(Ω,µ) = ∥|ϕ|∥L∞(Ω,µ) + ∥|∇ϕ|∥L∞(Ω,µ) ≤
M + ∥|ξ|∥L∞(Ω,µ) <∞ for any ϕ ∈ L(Ω, µ).

The objective functional Lµ∗ is convex and lower
semicontinuous (in fact, it is (Gateaux) differen-
tiable [31] as seen earlier for absolutely continuous µ∗).
Let {ϕn}n∈N be a minimizing sequence in L(Ω, µ) for
Lµ∗ , such that ϕn ∈ L(Ω, µ) and limn→∞ Lµ∗(ϕn) =
infϕ∈L(Ω,µ) Lµ∗(ϕ). Clearly, the sequence {ϕn}n∈N

is uniformly bounded since ∥ϕn∥W 1,∞(Ω,µ) ≤ M +
supx∈Ω |ξ|. It is also uniformly equicontinuous, since
|ϕn(x1)− ϕn(x2)| ≤ (supx∈Ω |ξ|) |x1 − x2| for all n ∈ N.
Therefore, by the Arzelà-Ascoli Theorem [31], there
exists a uniformly convergent subsequence {ϕnj}j∈N,
with the limit ϕ∗ ∈ L(Ω, µ). Furthermore, by the con-
tinuity of Lµ∗ , we get limj→∞ Lσ(ϕnj

) = Lµ∗(ϕ∗) =
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minϕ∈L(Ω,µ) Lµ∗(ϕ). By the convexity of the loss Lµ∗ ,
we get that ϕ∗ is a global minimizer of Lµ∗ .

(ii) Saddle points of Lagrangian functional L: The set
L(Ω) in the above problem can be expressed as L(Ω) ={
ϕ ∈W 1,∞(Ω) | G(ϕ) ∈ (−∞, 0]

}
, where the functional

G(ϕ) = ess sup |∇ϕ|2 − ξ2, and we have the constraint
qualification:

0 ∈ int
{
G
(
W 1,∞(Ω)

)
− (−∞, 0]

}
,

whereG
(
W 1,∞(Ω)

)
−(−∞, 0] = G

(
W 1,∞(Ω)

)
+[0,∞),

and the operation + denotes the Minkowski sum. This
allows us to apply Theorem 3.6 in [7] to infer that the
set of Lagrange multipliers corresponding to the mini-
mizer ϕ̄ is a non-empty, convex, bounded and weakly−∗

compact subset of L∞(Ω)∗≥0, and the set of Lagrange
multipliers is the same for any minimizer ϕ̄. Moreover,
we note that (−∞, 0] is a closed convex cone, and it fol-
lows from Theorem 3.4-(iii) in [7] that for any Lagrange
multiplier λ̄, the pair (ϕ̄, λ̄) is a saddle point of the La-
grangian functional L.

We now evaluate the Gateaux derivative of Lλ 4 in the
space W 1,∞(Ω). For ϕ ∈ W 1,∞(Ω) and a variation η ∈
W 1,∞(Ω), the directional derivative of Lλ at ϕ along η
is given by:

L′
λ(ϕ, η) = lim

ϵ→0+

1

ϵ

∫
Ω

(ϕ+ ϵη − ϕ)(−ρ+ ρ∗) dvol

+
1

2ϵ

∫
Ω

(
|∇ϕ+ ϵ∇η|2 − |ξ|2 − |∇ϕ|2 + |ξ|2

)
dλ,

which simplifies to:

L′
λ(ϕ, η) = lim

ϵ→0+

1

ϵ

∫
Ω

ϵη(−ρ+ ρ∗) dvol

+
1

2ϵ

∫
Ω

(
ϵ2|∇η|2 + 2ϵ∇ϕ · ∇η

)
dλ

= −
∫
Ω

η(ρ− ρ∗) dvol+
∫
Ω

∇ϕ · ∇η dλ,

where the dominated convergence theorem is applied in
order to calculate the previous limit which exists for
every η ∈W 1,∞(Ω).

By the Minimax theorem and since (ϕ̄, λ̄) is a sad-
dle point for the Lagrangian L, we have L(ϕ̄, λ̄) =
supλ infϕ L(ϕ, λ) = infϕ supλ L(ϕ, λ). Moreover, for any
feasible ϕ̃ and λ ≥ 0, we note that L(ϕ̃, λ) ≤ L(ϕ̃, 0) <

+∞ and which implies that supλ L(ϕ̃, λ) ≤ L(ϕ̃, 0).
This implies supλ infϕ L(ϕ, λ) = infϕ supλ L(ϕ, λ) ≤
L(ϕ̄, 0) < +∞. Thus, for feasibility we must have∫
Ω
(|∇ϕ̄|2 − |ξ|2) dλ̄ ≤ 0, from which it follows that

4 We adopt the notation Lλ(ϕ) = L(ϕ, λ).

|∇ϕ̄|2 ≤ |ξ|2 a.e. in Ω as λ̄ ∈ ba(Ω)≥0 (since if ϕ̄ does
not satisfy |∇ϕ̄|2 ≤ |ξ|2 a.e. in Ω, we would have that
supλ L(ϕ̄, λ) = +∞, violating the finite upper bound).
We also have:

L(ϕ̄, 0) = −
∫
Ω

ϕ̄(ρ− ρ∗) dvol ≤ L(ϕ̄, λ̄) = min
ϕ
L(ϕ, λ̄)

≤ L(ϕ̄, λ̄) = −
∫
Ω

ϕ̄(ρ− ρ∗) dvol+
∫
Ω

(|∇ϕ̄|2 − |ξ|2)dλ̄

≤ −
∫
Ω

ϕ̄(ρ− ρ∗) dvol,

where the first inequality is due to the saddle point def-
inition, the second equality follows from the Minimax
theorem, the last inequality from the fact that ϕ̄ is a fea-
sible solution. All inequalities are indeed equalities, and
we therefore see that complementary slackness holds in
the form

∫
Ω
(|∇ϕ̄|2 − |ξ|2) dλ̄ = 0.

Since the pair (ϕ̄, λ̄) is a saddle point of L, it is also
a stationary point of L and we have L′

λ̄
(ϕ̄, η) = 0 for

any η ∈W 1,∞(Ω), and we get the stationarity condition∫
Ω
η(ρ− ρ∗) dvol =

∫
Ω
∇ϕ̄ · ∇η dλ̄.

(iii) Improved regularity of Lagrange multipliers: We
now establish stronger regularity for the Lagrange
multipliers λ̄. We have that the Lagrange multipliers
λ̄ ∈ L∞(Ω)∗≥0, which are finitely additive measures
absolutely continuous w.r.t. the Lebesgue measure,
are also linear continuous functionals on L∞(Ω) and
must therefore vanish on sets of Lebesgue measure zero
(i.e., λ̄(A) = 0 for A ⊂ Ω with vol(A) = 0). More-
over, from Theorem 1.24 in [35], we can decompose
λ̄ = λ̄c + λ̄p, where λ̄c is a non-negative countably
additive measure and λ̄p is non-negative and purely
finitely additive. By the Radon-Nikodym theorem,
we get that there exists a function hc ∈ L1(Ω) such
that the countably additive and absolutely continuous
measure λc satisfies dλ̄c = hc dvol. By substitution in
the stationarity condition, we get

∫
Ω
η(ρ − ρ∗) dvol =∫

Ω
(∇ϕ̄ · ∇η) hc dvol+

∫
Ω
∇ϕ̄ · ∇η dλ̄p. We now consider

a set Dδ =
{
x ∈ Ω | − δ ≤ |∇ϕ(x)|2 − ξ2(x) ≤ 0

}
, with

0 < δ < minx∈Ω ξ
2(x). By complementary slackness,

we note that λ̄(Ω \ Dδ) = 0. Since λ̄p is purely finitely
additive, it implies that there must exist a collection
of nonempty sets {En}N∈N with En+1 ⊂ En and
limn→∞En = ∅, such that limn→∞ λ̄p(En) > 0 5 . Since
λ̄(Ω \Dδ) = 0, we can suppose without loss of general-
ity that E0 ⊂ Dδ. We also consider another collection
of nonempty sets {E′

n}N∈N, with the same properties
(with E′

0 ⊂ Dδ, E′
n+1 ⊂ E′

n and limn→∞E′
n = ∅), such

that En ⊂ E′
n for all n ∈ N. We note that for x ∈ Dδ,

5 For a countably additive measure ν that is absolutely
continuous w.r.t. the Lebesgue measure, and any collec-
tion of nonempty sets {En}N∈N with En+1 ⊂ En and
limn→∞ En = ∅, we have limn→∞ ν(En) = 0 [35].

11



we have 0 < ξ2(x) − δ ≤ |∇ϕ(x)|2 ≤ ξ2(x), which im-
plies that ∇ϕ does not vanish on E′

n for any n ∈ N.
We now consider a family of variations ηn ∈ W 1,∞(Ω)
for n ∈ N such that ηn and ∇ηn are supported in E′

n,
∇ϕ ·∇ηn ≥ 0 in E′

n and∇ϕ ·∇ηn ≥ ϵ in En (uniformly).
The stationarity condition would now yield, for n ∈ N:∫

E′
n

ηn(ρ− ρ∗) dvol

=

∫
E′

n

(∇ϕ̄ · ∇ηn) hc dvol+
∫
E′

n

∇ϕ̄ · ∇ηn dλ̄p

≥
∫
E′

n

(∇ϕ̄ · ∇ηn) hc dvol+ϵ
∫
En

dλ̄p.

In the limit n → 0, we have limn→∞
∫
E′

n
ηn(ρ −

ρ∗) dvol = 0 and limn→∞
∫
E′

n
(∇ϕ̄ · ∇ηn) hc dvol = 0,

which implies that 0 ≤ limn→∞ ϵ
∫
En
dλ̄p ≤ 0, and

we get limn→∞ λ̄p(En) = 0, i.e., the measure λ̄ does
not have a purely finitely additive component. There-
fore, the measure λ̄ is countably additive (and abso-
lutely continuous) and possesses a Radon-Nikodym
derivative w.r.t. the Lebesgue measure, in L1(Ω). For
ease of notation, we henceforth let λ̄ ∈ L1(Ω) also
denote its density function. Moreover, we note that
since λ̄ ∈ L1(Ω)≥0 and |∇ϕ̄|2 − |ξ|2 ≤ 0 a.e. in Ω,
we can now indeed state the complementary slackness
condition as λ̄(|∇ϕ̄|2 − |ξ|2) = 0 a.e. in Ω, which im-
plies that λ̄(|∇ϕ̄| − |ξ|) = 0 a.e. in Ω. We also see
that ϕ̄ ∈W 1,∞(Ω).

We recall from the stationarity condition that for any
variation η ∈W 1,∞(Ω) at ϕ̄, we have

∫
Ω
η(ρ−ρ∗) dvol =∫

Ω
∇ϕ̄ · ∇η dλ̄ =

∫
Ω
λ̄∇ϕ̄ · ∇η dvol. Under stronger reg-

ularity of the saddle point (ϕ̄, λ̄), the stationarity condi-
tion can be expressed as:∫

Ω

(ρ− ρ∗)η dvol =

∫
Ω

λ̄∇ϕ̄ · ∇η dvol

= −
∫
Ω

∇ · (λ̄∇ϕ̄)η dvol+

∫
∂Ω

λ̄∇ϕ̄ · nη dS

where we have used the divergence theorem to obtain the
final equality, with S as the surface measure on ∂Ω. As
the above holds for any variation η ∈W 1,∞(Ω), it must
follow that −∇ ·

(
λ̄∇ϕ̄

)
= ρ− ρ∗ in Ω and λ̄∇ϕ̄ · n = 0

on ∂Ω, and if we do not suppose stronger regularity of the
saddle point (ϕ̄, λ̄), the equations must be hold weakly.
Therefore, the saddle point (ϕ̄, λ̄) weakly satisfies −∇ ·(
λ̄∇ϕ̄

)
= ρ− ρ∗ in Ω and λ̄∇ϕ̄ · n = 0 on ∂Ω.

The above correspond to the necessary KKT conditions.
Conversely, any solution pair (ϕ̄, λ̄) which satisfies the
above KKT conditions results in a saddle point for the
Lagrangian and it is a solution to the original optimiza-
tion problem.

B.2 Proof of Theorem 2

(a) Process (7) achieves (8). We recall from (4) and
Lemma 1 that for the transport µk → µ∗, and for any x ∈
Ω, we have:

ϕµk→µ∗(x) = inf
y∈Ω

c(x, y) + ϕµk→µ∗(y). (11)

Clearly, for any x, y ∈ Ω, we have the inequality
ϕµk→µ∗(x) ≤ c(x, y) + ϕµk→µ∗(y). Now, since c(x, y) =
c(x, z) + c(z, y) for any (and only) z on a minimum-
length geodesic from x to y, we have that the following
holds µk–a.e.:

0 = inf
y∈Ω,

z∈γ̄x→y([0,1])

[−ϕµk→µ∗(x) + ϕµk→µ∗(z)− ϕµk→µ∗(z)

+ϕµk→µ∗(y) + c(x, z) + c(z, y)] ,

where γ̄x→y : [0, 1]→ Ω is a length-minimizing geodesic
from x to y. Rearranging the above, it follows that the
following holds µk–a.e.:

0 = inf
y∈Ω,

z∈γ̄x→y([0,1])

[−ϕµk→µ∗(x) + ϕµk→µ∗(z) + c(x, z)]

+ [−ϕµk→µ∗(z) + ϕµk→µ∗(y) + c(z, y)] .

Moreover, since the expressions (within the infimum)
above are each non-negative, and their sum attains an
infimum value of zero, we infer that they individually
attain zero. Thus, for any minimizer y∗ in (11), we get
that every point on a length-minimizing geodesic from x
to y∗ is also a minimizer. We note that the set of min-
imizers Mϵ

µk
(x) in (7) therefore correspond to the seg-

ments of the length-minimizing geodesics (from the cur-
rent iterate to the minimizers of (11)) contained in the
ϵ-ballBcϵ centered at the current iterate. Moreover, since
ϕµk→µ∗ is differentiable µk-almost everywhere, it follows
that the set of minimizersMϵ

µk
(x) are one-dimensional

and are segments of geodesics from (almost every) x ∈ Ω.
It is known from Theorem 5.10 in [34] that the optimal
transport plans πk ∈ P(Ω × Ω) (with µk and µ∗ as the
marginals) are supported in the set:

Γ = {(x, y) ∈ Ω× Ω | ϕµk→µ∗(x)− ϕµk→µ∗(y) = c(x, y)} .

Let Γx = {y ∈ Ω | (x, y) ∈ Γ} and Γϵx = Γx ∩ Bcϵ (x) for
all x ∈ Ω where ϕµk→µ∗ is differentiable (since this is the
case almost everywhere in Ω, we ignore the set of zero
measure where ϕµk→µ∗ is not differentiable in the rest
of this proof). We see that Γϵx is the set of minimizers
Mϵ

µk
(x) in (7).

Now, for any transport map T̃k from µk to µ∗, we get
ϕµk→µ∗(x) ≤ c(x, T̃k(x)) + ϕµk→µ∗(T̃k(x)). It then fol-
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lows that:∫
Ω

(
ϕµk→µ∗(x)− ϕµk→µ∗(T̃k(x))

)
dµk(x)

=

∫
Ω

ϕµk→µ∗dµk −
∫
Ω

ϕµk→µ∗dµ∗

≤
∫
Ω

c(x, T̃k(x))dµk(x).

We see that the LHS is the optimal transport cost ob-
tained from the Kantorovich dual formulation, while
an infimum over the RHS w.r.t. T̃k would again yield
the optimal transport cost from the Monge formula-
tion and an equality would then be attained. From
Theorem 1 in [19], we get that the Monge prob-
lem attains a minimum, and let T̃ ∗

k be an optimal
transport map from µk to µ∗. Thus, we infer that
−ϕµk→µ∗(x) + ϕµk→µ∗(T̃ ∗

k (x)) + c(x, T̃ ∗
k (x)) = 0, µk-

almost everywhere in Ω, and T̃ ∗
k (x) ∈ Γx. Moreover, the

set Γϵx, which is obtained as minimizersMϵ
µk
(x) in (7),

is precisely the segment of the geodesic (of length ϵ)
from x to T̃ ∗

k (x) for µk-almost every x ∈ Ω. From this
correspondence between the Monge problem and the
process (7), and from the the proof of Lemma 2, it fol-
lows that the optimal transport cost C(µk, µ∗) can be
decomposed as in (8) by the process (7).

(b) Process (7) achieves convergence C(µk, µ
∗) → 0.

We now consider a single update step of the pro-
cess {X(k)}k∈N. For simplicity of notation, let X
be a random variable such that X ∼ µ for some
µ ∈ P(Ω) and let x ∈ Ω be a sample of X. Let x+
be a sample drawn uniformly at random from the set
of minimizers argminz∈Bc

ϵ (x)
c(x, z) + ϕµ→µ∗(z) =

argminz∈Bc
ϵ (x)

c(x, z) + c(z, Tµ→µ∗(x)). Note that any
such x+ satisfies c(x+, Tµ→µ∗(x)) ≤ c(x, Tµ→µ∗(x)).
Since this holds for any sample x of X, we get
that the random variable X+ obtained from the
single update of X, with X+ ∼ µ+, is such that
C(µ+, µ∗) ≤ C(µ, µ∗). Therefore, the sequence of mea-
sures {µk}k∈N corresponding to the process {Xk}k∈N
satisfies C(µk+1, µ

∗) ≤ C(µk, µ
∗) for all k ∈ N, and ap-

plying the monotone convergence theorem, we get that
C(µk, µ

∗) → C̄. By Prokhorov’s Theorem [34], from
which we get that P(Ω) is compact w.r.t. the topology
of weak convergence, and the fact that µk lies on the
(unique) geodesic between µ0 and µ∗, it follows that
there exists an accumulation point µ̄ on the geodesic
between µ0 and µ∗ such that µk → µ̄. This implies that
C(µ̄, µ̄+) = 0, where µ̄+ ∈ P(Ω) is obtained from a one
step update of X̄ ∼ µ̄. Furthermore, we have

C(µ̄, µ̄+) = min
σ∈Π(µ̄,µ̄+)

∫
Ω×Ω

c(x, z)dσ(x, z).

From Section (a) of the proof, it follows that the pro-
cess (7) results in optimal transport from µ̄ to µ̄+. With
π as the transition probability for the process (7), we get

C(µ̄, µ̄+) = min
σ∈Π(µ̄,µ̄+)

∫
Ω×Ω

c(x, z)dσ(x, z)

=

∫
x∈Ω

∫
z∈Ω

c(x, z)dπ(z | x)dµ̄(x)

=

∫
x∈Ω

1

ℓ(Mϵ
µ̄(x))

∫
z∈Mϵ

µ̄(x)

c(x, z)dℓ(z)dµ̄(x).

Suppose that C(µ̄, µ∗) = η > 0. First note that for every
x ∈ Ω, the following holds

c(x, Tµ→µ∗(x)) = min
z∈Bc

ϵ (x)
c(x, z) + c(z, Tµ→µ∗(x)),

owing to the triangle inequality being an equality along
the c-geodesic. Furthermore, note that for any minimizer
z above, i.e. for z ∈ Mϵ

µ̄(x) we have c(z, Tµ→µ∗(x)) ≤
c(x, Tµ→µ∗(x)). We then have

η = C(µ̄, µ∗) =

∫
Ω

c(x, Tµ̄→µ∗(x)) dµ̄(x)

=

∫
Ω

min
z∈Bc

ϵ (x)
[c(x, z) + c(z, Tµ→µ∗(x))] dµ̄(x)

=

∫
Ω

1

ℓ(Mϵ
µ̄(x))

∫
z∈Mϵµ̄(x)

[c(x, z)

+c(z, Tµ→µ∗(x))] dℓ(z)dµ̄(x)

= C(µ̄, µ̄+)

+

∫
Ω

1

ℓ(Mϵ
µ̄(x))

∫
z∈Mϵ

µ̄(x)

c(z, Tµ→µ∗(x))dℓ(z)dµ̄(x)

From C(µ̄, µ̄+) = 0 (since µ̄ is an accumulation point),
we get∫

Ω

1

ℓ(Mϵ
µ̄(x))

∫
z∈Mϵ

µ̄(x)

c(z, Tµ→µ∗(x))dℓ(z)dµ̄(x) = η

which implies that µ̄-a.e. in Ω

c(x, Tµ̄→µ∗(x)) =
1

ℓ(Mϵ
µ̄(x))

∫
z∈Mϵ

µ̄(x)

c(z, Tµ→µ∗(x))dℓ(z).

Since for z ∈ Mϵ
µ̄(x) we have c(z, Tµ→µ∗(x)) ≤

c(x, Tµ→µ∗(x)), it follows that Mϵ
µ̄(x) = {x}, µ̄-a.e.

in Ω, which is the case if and only if Tµ̄→µ∗(x) = x,
i.e., C(µ̄, µ∗) = 0, and we get a contradiction. There-
fore, it follows that µ∗ is the only accumulation point
and the sequence {µk}k∈N converges to µ∗ as k → ∞
w.r.t. the topology of weak convergence in P(Ω), i.e.,
C(µk, µ

∗)→ 0.
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