Active Circuits: Life gets interesting

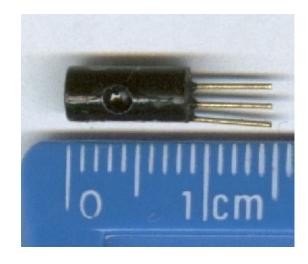
Active cct elements – transistors and operational amplifiers (OP-AMPS)

Devices which can inject power into the cct

External power supply – normally comes from connection to the voltage supply "rails"

Capable of linear operation – amplifiers and nonlinear operation – typically switches

Triodes, pentodes, transistors



Active Cct Elements

Amplifiers – linear & active

Signal processors

Stymied until 1927 and Harold Black

Negative Feedback Amplifier

Control rescues communications

Telephone relay stations manageable

against manufacturing variability

Linearity

Output signal is proportional to the input signal

Note distinction between signals and systems which transform them

microphone

Yes! Just like your stereo amplifier

Idea – controlled current and voltage sources

speaker

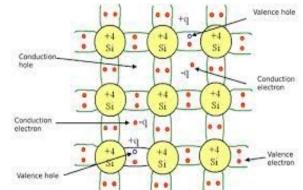
A Brief Aside - Transistors

A semiconductor sometimes conducts and sometimes does not – conductivity controlled by applied voltage

Commonly made of silicon doped w/ other elements:

- Doping mixes traces of dopant elements into semiconductor materials
- These elements add "donor atoms" to substrate material, encouraging conductivity

p-doping (mobile holes): Si doped w/ B, Ga, In n-doping (mobile electrons): Si doped w/ Sb, P, As

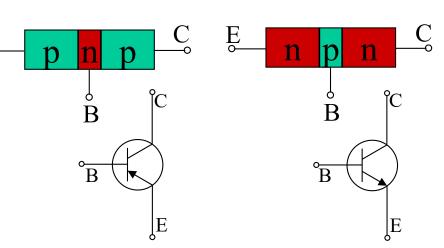


Bipolar Junction Transistors

Two types npn and pnp

Heavily doped Collector and Emitter Lightly doped Base and very thin Collector and Emitter thick and dopey

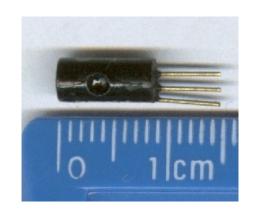
Need to bias the two junctions properly



Then the base current modulates a strong C→E current

Transistor Switch

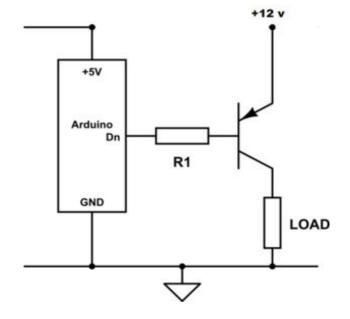
The transistor is an active component: a device that can produce an output signal with more power in it than the input signal. The additional power comes from external power supply.



The Arduino digital output asserts a voltage on the pin and this causes a small current to flow through R1 into the base of the transistor. This then makes the transistor conduct, which causes a much larger current to flow through the load.

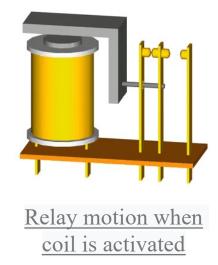
Amplification $i_C = \beta i_B$

Current gains in transistors typically range from 50 to 1000



Alternative to transistors: mechanical relays

- A relatively small current powers an electromagnet that activates a switch
- Thus, a lower power signal can control a higher power device



What are the disadvantages of relays relative to transistors?

- Slower switching
- Wears out over time

Advantages?

- Full electrical isolation of controlled circuit to avoid frying circuits
- Can be built to control very large currents

Transistors

Common Emitter Amplifier Stage

Biasing resistors R₁ and R₂

Keep transistor junctions biased in amplifying range

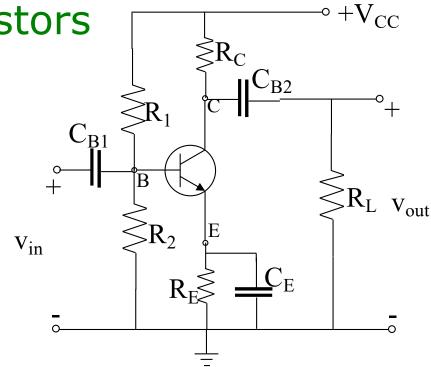
Blocking capacitors C_{B1} and C_{B2}

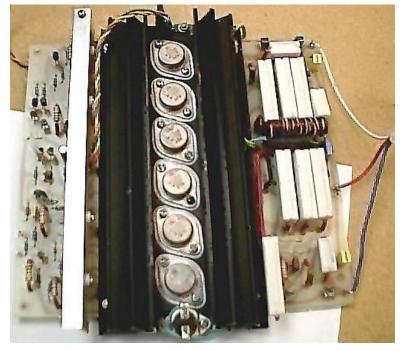
Keep dc currents out

Feedback capacitor C_E

Grounds emitter at high frequencies

Small changes in v_{in}
Produce large changes in v_{out}



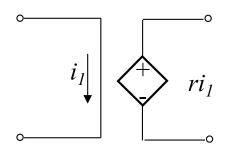


Linear Dependent Sources

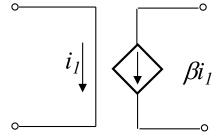
Active device models in linear mode

Transistor takes an input voltage v_i and produces an output current $i_0 = gv_i$ where g is the gain

This is a linear voltage-controlled current source VCCS



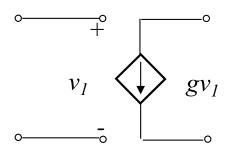
CCVS r transresistance



CCCS β current gain



VCVS μ voltage gain



VCCS g transconductance

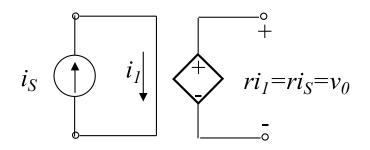
Linear dependent source (contd)

Linear dependent sources are parts of active cct models – they are not separate components

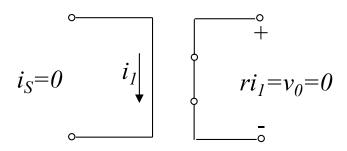
But they allow us to extend our cct analysis techniques to really useful applications

This will become more critical as we get into dynamic ccts

Dependent elements change properties according to the values of other cct variables



Source on

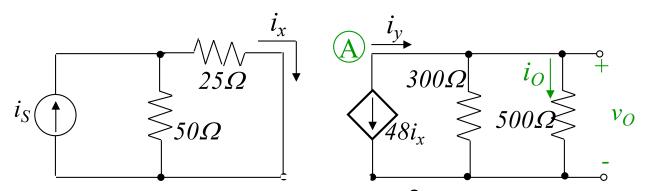


Source off

Cct Analysis with Dependent Sources

Golden rule – do not lose track of control variables

Find i_O , v_O and P_O for the 500 Ω load

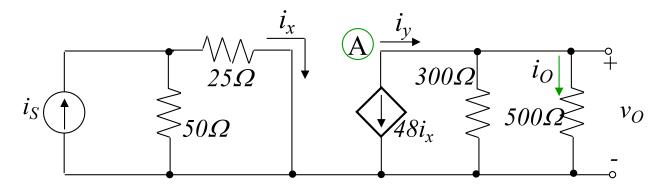


Current divider on LHS $i_x = \frac{2}{3}i_S$ Current divider on RHS $i_O = \frac{3}{8}(-48)i_x = -18i_x = -12i_S$

Ohm's law $v_O = i_O 500 = -6000 i_S$

Power $p_O = i_O v_O = 72,000 i_S^2$

Analysis with dependent sources



Power provided by ICS

$$p_S = (50||25)i_S^2 = \frac{50}{3}i_S^2$$

Power delivered to load

 $72000i_S^2$

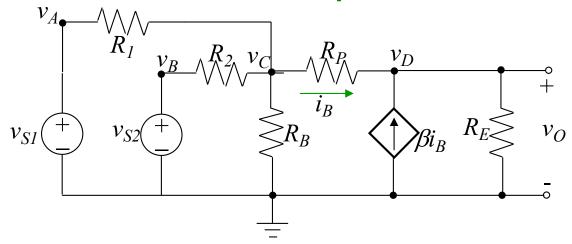
Power gain

$$G = \frac{p_O}{p_S} = \frac{72000i\frac{2}{S}}{50/3i\frac{2}{S}} = 4320$$

Where did the energy come from?

External power supply

Nodal Analysis with Dependent Source



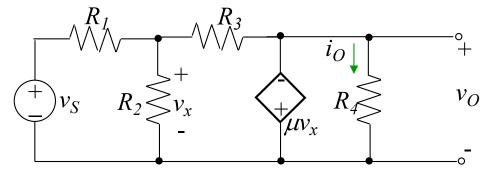
KCL at node C $G_1(v_C - v_{S1}) + G_2(v_C - v_{S2}) + G_B v_C + G_P(v_C - v_D) = 0$ KCL at node D $G_P(v_D - v_C) + G_E v_D - \beta i_B = 0$

CCCS element description $i_B = G_P(v_C - v_D)$

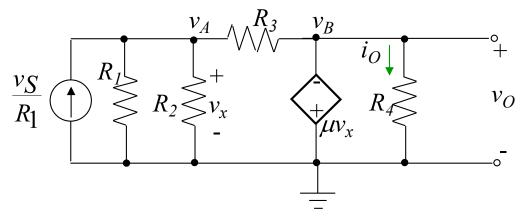
Substitute and solve

$$(G_1 + G_2 + G_B + G_P)v_C - G_P v_D = G_1 v_{S1} + G_2 v_{S2}$$
$$-(\beta + 1)G_P v_C + [(\beta + 1)G_P + G_E]v_D = 0$$

T&R, 5th ed, Example 4-3 p 148



Find v_O in terms of v_S What happens as $\mu \rightarrow \infty$?



Node A:

$$(G_1 + G_2 + G_3)v_A - G_3v_B = G_1v_S$$

Node B:

$$v_B = -\mu v_\chi = -\mu v_A$$

Solution:

$$v_O = v_B = -\mu v_A = \left(\frac{-\mu G_1}{G_1 + G_2 + (1 + \mu)G_3}\right) v_S$$

For large gains μ : $(1+\mu)G_3 >> G_1+G_2$

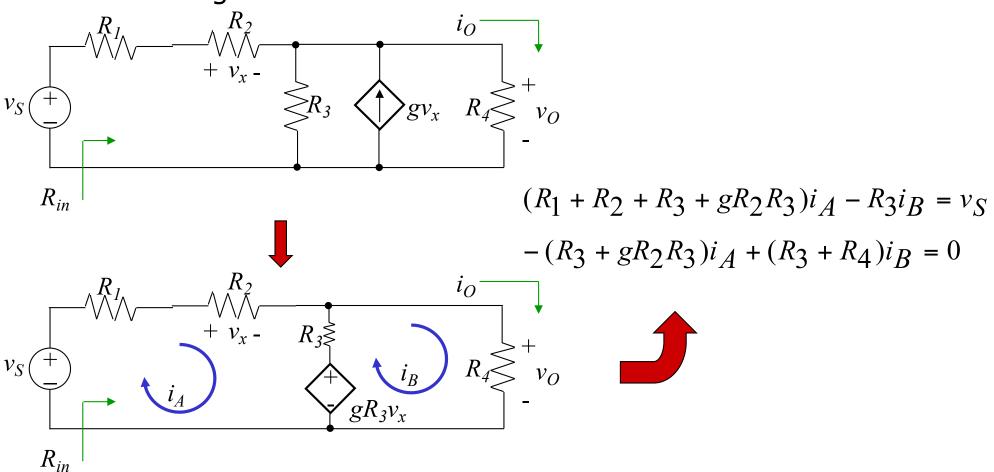
$$v_O \approx \left[\frac{-\mu G_1}{(1+\mu)G_3}\right] v_S \approx -\frac{R_3}{R_1} v_S$$

This is a model of an inverting op-amp

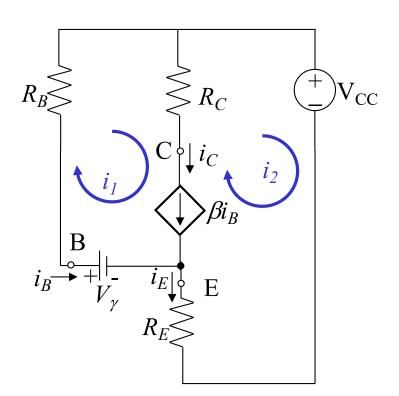
Mesh Current Analysis with Dependent Sources

Dual of Nodal Analysis with dependent sources

Treat the dependent sources as independent and sort out during the solution



T&R, 5th ed, Example 4-5 BJTransistor



Needs a supermesh

Current source in two loops without R in parallel Supermesh = entire outer loop

Supermesh equation

$$i_2 R_E - V_{\gamma} + i_1 R_B + V_{CC} = 0$$

Current source constraint

$$i_1 - i_2 = \beta i_B$$

Solution

$$i_B = -i_1 = \frac{V_{CC} - V_{\gamma}}{R_B + (\beta + 1)R_E}$$

Operational Amplifiers - OpAmps

Basic building block of linear analog circuits

Package of transistors, capacitors, resistors, diodes in a chip

Five terminals

- Positive power supply V_{CC}
- Negative power supply V_{CC}
- Non-inverting input v_p
- Inverting input v_n
- Output v_O

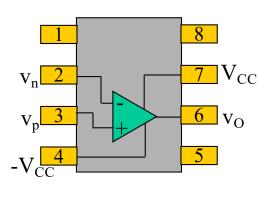
Linear region of operation

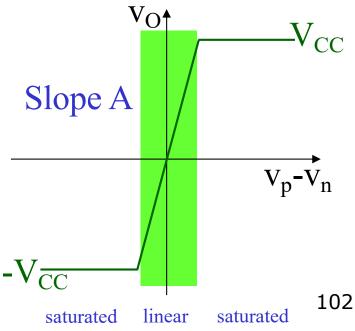
$$v_O = A(v_p - v_n)$$

Ideal behavior

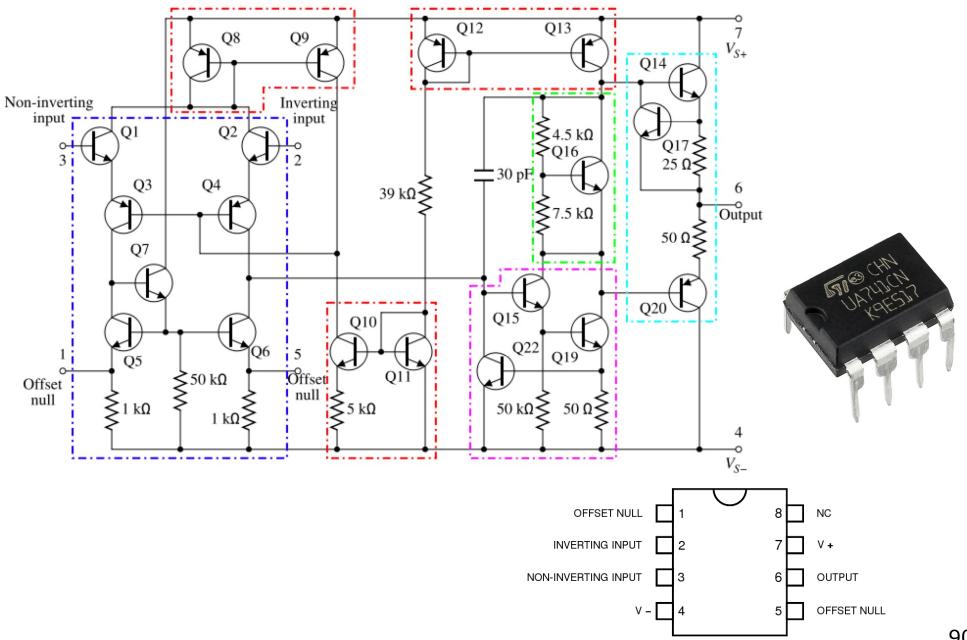
$$10^5 < A < 10^8$$

Saturation at V_{CC}/-V_{CC} limits range





Real OpAmp (u741)



Ideal OpAmp

Equivalent linear circuit

Dependent source model

$$10^6 < R_I < 10^{12} \Omega \qquad \infty \Omega$$

$$10 < R_o < 100\Omega$$

$$10^5 < A < 10^8$$

Need to stay in linear range

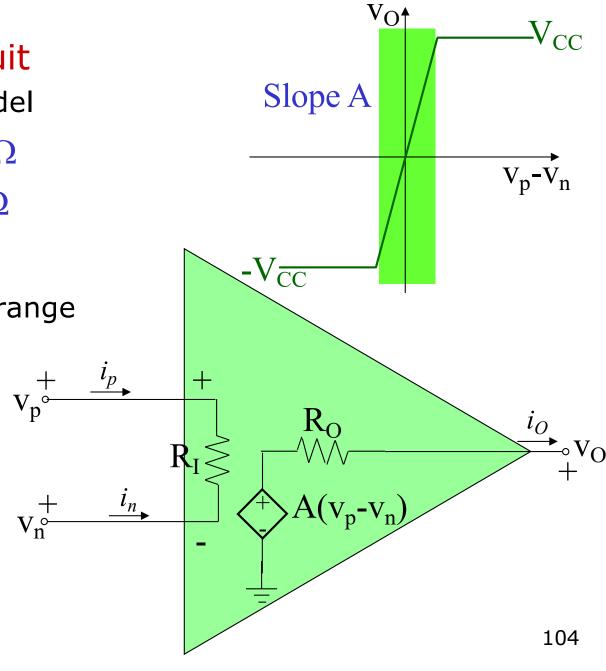
$$-V_{CC} \le v_O \le V_{CC}$$
$$-\frac{V_{CC}}{A} \le v_p - v_n \le \frac{V_{CC}}{A}$$

Ideal conditions

$$v_p = v_n$$

$$i_p = i_n = 0$$

MAE40 Linear Circuits



Non-inverting OpAmp - Feedback

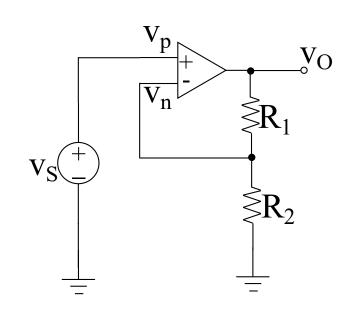
What happens now?

Voltage divider feedback

$$v_n = \frac{R_2}{R_1 + R_2} v_O$$

Operating condition $v_p = v_S$

$$v_O = \frac{R_1 + R_2}{R_2} v_S$$



Linear non-inverting amplifier

Gain K=
$$\frac{R_1 + R_2}{R_2}$$

With dependent source model

$$v_O = \frac{R_I A (R_1 + R_2) + R_2 R_O}{R_I (A R_2 + R_O + R_1 + R_2) + R_2 (R_1 + R_O)} v_S$$

T&R, 5th ed, Example 4-13

Analyze this

$$i_p = 0$$

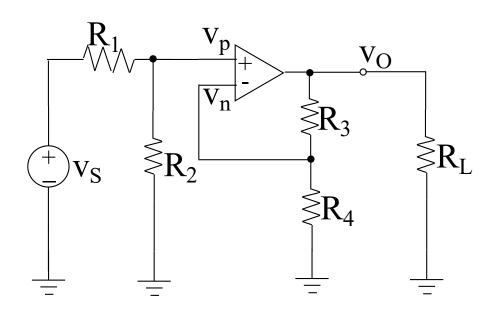
$$K_S = \frac{v_p}{v_S} = \frac{R_2}{R_1 + R_2}$$

Ideal OpAmp has zero output resistance

 R_L does not affect v_O

$$K_{\text{AMP}} = \frac{v_O}{v_p} = \frac{R_3 + R_4}{R_4}$$

$$K_{\text{Total}} = K_S K_{\text{AMP}} = \frac{v_O}{v_S} = \left[\frac{R_2}{R_1 + R_2} \right] \left[\frac{R_3 + R_4}{R_4} \right]$$



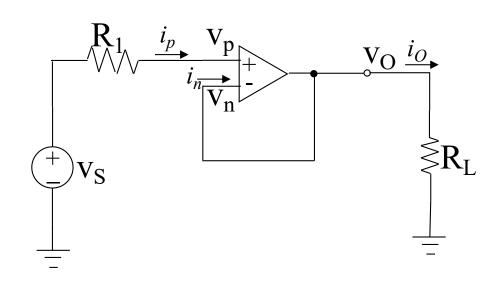
Voltage Follower - Buffer

Feedback path

$$v_n = v_O$$

Infinite input resistance

$$i_p = 0$$
, $v_p = v_S$



Ideal OpAmp

$$v_p = v_n$$

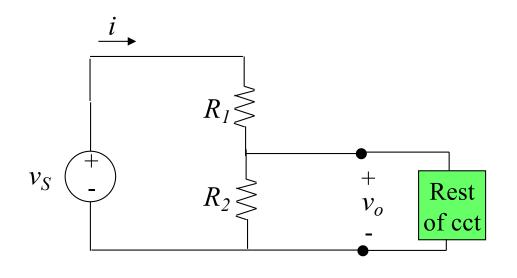
$$v_O = v_S$$

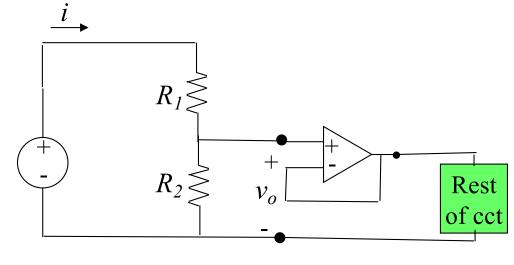
$$i_O = \frac{v_O}{R_L}$$

Loop gain is 1

Power is supplied from the Vcc/-Vcc rails

Blast from the past: Voltage Dividers





Often we use a voltage divider to provide an input voltage to a cct element

When would this work?

When the "rest of cct" does not draw much current compared to R_2 Why is this? What is it asking of the equivalent of the rest of cct?

Note that this is a very common circuit used to "bias" a transistor to an operating voltage

OpAmp Ccts - inverting amplifier

Input and feedback applied at same terminal of OpAmp

 R_2 is the feedback resistor

So how does it work?

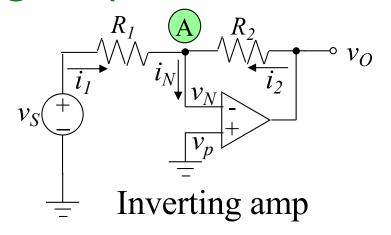
KCL at node A

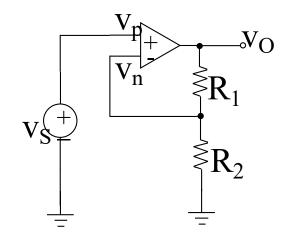
$$\frac{v_N-v_S}{R_1}+\frac{v_N-v_O}{R_2}+i_N=0$$

$$i_N = 0, \ v_N = v_p = 0$$

$$v_O = -\frac{R_2}{R_1} v_S$$

 $v_O = -Kv_S$ hence the name





Non-inverting amp

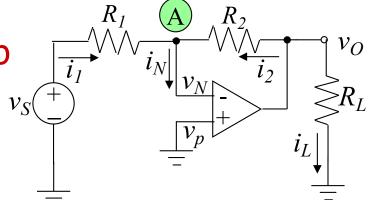
Inverting Amplifier (contd)

Current flows in the inverting amp

$$i_1 = \frac{v_S}{R_1}, \ R_{in} = R_1$$

$$i_2 = \frac{v_O}{R_2} = \frac{-v_S}{R_1} = -i_1$$

$$i_L = \frac{v_O}{R_L} = -\frac{R_2}{R_1} \times \frac{1}{R_L} \times v_S$$



OpAmp Analysis - T&R, 5th ed, Example 4-14

Compute the input-output relationship of this cct

Convert the cct left of the node A to its Thévenin equivalent

$$v_T = v_{OC} = \frac{R_2}{R_1 + R_2} v_S$$

$$R_T = R_{in} = R_3 + \frac{R_1 R_2}{R_1 + R_2} = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_1 + R_2}$$

Note that this is not the inverting amp gain times the voltage divider gain

There is interaction between the two parts of the cct (R_3)

This is a feature of the inverting amplifier configuration

 $= - \left| \frac{\kappa_4(\kappa_1 + \kappa_2)}{R_1 R_2 + R_1 R_3 + R_2 R_3} \right| \left| \frac{\kappa_2}{R_1 + R_2} \right| v_S$ $-\frac{R_2R_4}{R_1R_2+R_1R_3+R_2R_3}v_S$ 111

MAE40 Linear Circuits

Summing Amplifier - Adder

So what happens?

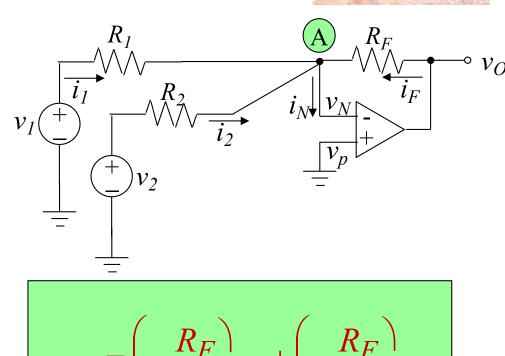
Node A is effectively grounded

$$v_n = v_p = 0$$

Also $i_N=0$ because of R_{in}

$$\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_O}{R_F} = 0$$

This is an inverting summing amplifier



$$v_{O} = \left(-\frac{R_{F}}{R_{1}}\right)v_{1} + \left(-\frac{R_{F}}{R_{2}}\right)v_{2}$$
$$= -K_{1}v_{1} - K_{2}v_{2}$$

Ever wondered about audio mixers? How do they work?

Mixing desk – Linear ccts

Currents add

Summing junction

Virtual ground at
$$\mathbf{v_n}$$
 $v_O = \left(-\frac{R_F}{R_1}\right)v_1 + \left(-\frac{R_F}{R_2}\right)v_2 + \ldots + \left(-\frac{R_F}{R_m}\right)v_m$
Currents add

$$=K_1v_1+K_2v_2+\cdots+K_mv_m$$

Permits adding signals to create a composite

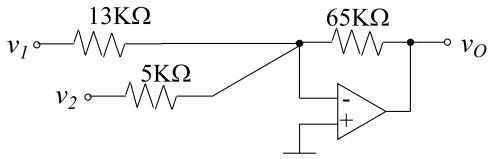
Strings+brass+woodwind+percussion

Guitars+bass+drums+vocal+keyboards

T&R, 5th ed, Design Example 4-15

Design an inverting summer to realize $v_0 = -(5v_1 + 13v_2)$

Inverting summer with $\frac{R_F}{R_1} = 5$, $\frac{R_F}{R_2} = 13$



Nominal values

Standard values

If v_1 =400mV and V_{CC} =±15V what is max of v_2 for linear opⁿ?

Need to keep
$$v_0 > -15V$$

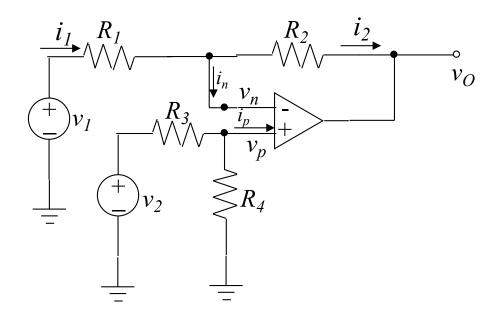
$$-15 < -(5v_1 + 13v_2)$$

$$15 > 5v_1 + 13v_2$$

$$v_2 < \frac{15 - 5 \times 0.4}{13} = 1V$$

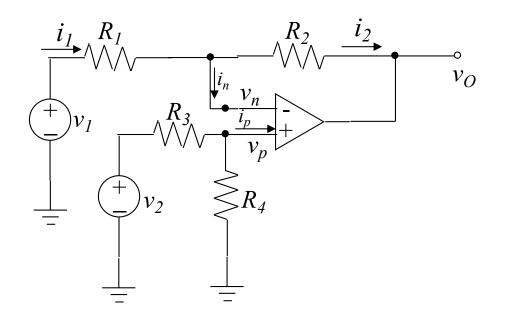
114

OpAmp Circuits – Differential Amplifier



MAE40 Linear Circuits

OpAmp Circuits – Differential Amplifier



Use <u>superposition</u> to analyze

 v_2 =0: inverting amplifier

$$v_{O1} = -\frac{R_2}{R_1} v_1$$

 v_1 =0: non-inverting amplifier plus voltage divider

$$v_{O2} = \left[\frac{R_4}{R_3 + R_4}\right] \left[\frac{R_1 + R_2}{R_1}\right] v_2$$

$$v_{O} = v_{O1} + v_{O2}$$

$$= -\left[\frac{R_{2}}{R_{1}}\right]v_{1} + \left[\frac{R_{4}}{R_{3} + R_{4}}\right]\left[\frac{R_{1} + R_{2}}{R_{1}}\right]v_{2} \quad K_{I} \text{ inverting gain } K_{2} \text{ non-inverting gain } K_{2} \text{ non-inverting gain } K_{3} + K_{4} = -K_{1}v_{1} + K_{2}v_{2}$$

T&R, 5th ed, Exercise 4-13

What is v_o ?

This is a differential amp

 v_1 is 10V, v_2 is 10V

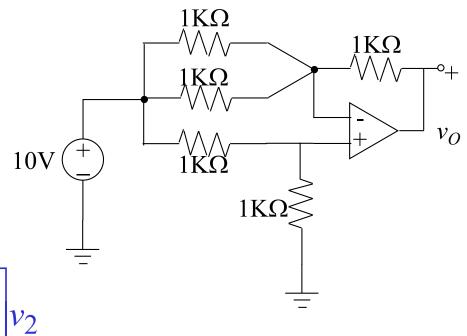
 $R_1 = 1K\Omega | |1K\Omega = 500\Omega$

$$R_2 = R_3 = R_4 = 1 K\Omega$$

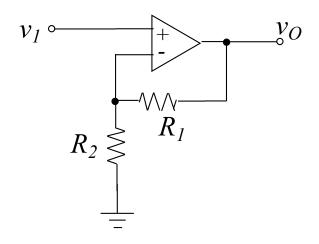
$$v_{O} = K_{1}v_{1} + K_{2}v_{2}$$

$$= -\frac{R_{2}}{R_{1}}v_{1} + \left[\frac{R_{1} + R_{2}}{R_{1}}\right] \left[\frac{R_{4}}{R_{3} + R_{4}}\right]v_{2}$$

$$= -20 + 3 \quad \frac{1}{2} \quad 10 = -5V$$

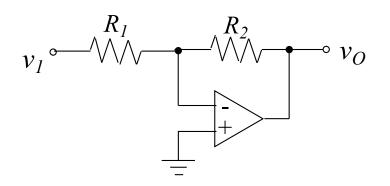


Lego Circuits



$$K = \frac{R_1 + R_2}{R_2}$$

Non-inverting amplifier

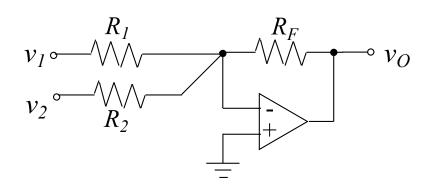


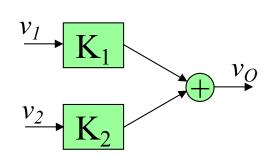
$$V_I \longrightarrow K$$

$$K = -\frac{R_2}{R_1}$$

Inverting amplifier

Lego Circuits (contd)

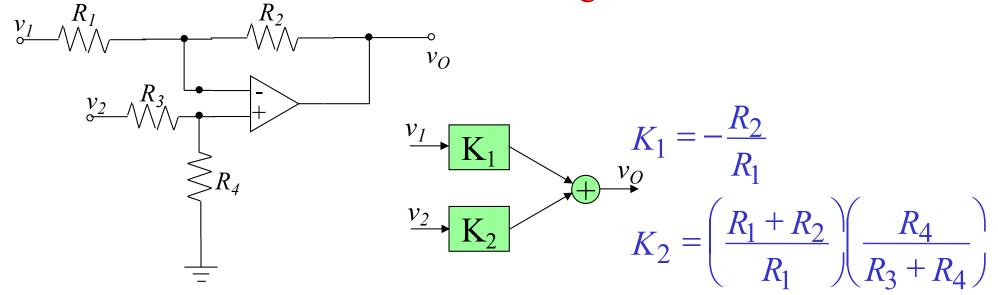




$$K_1 = -\frac{R_F}{R_1}$$

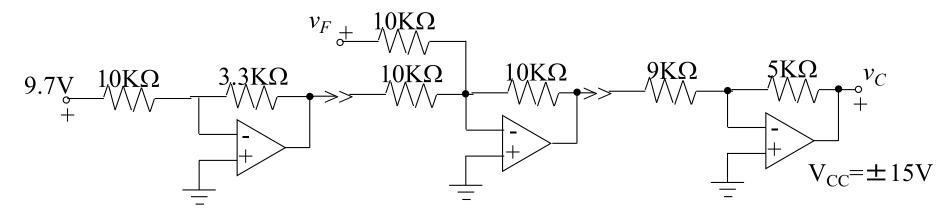
$$K_2 = -\frac{R_F}{R_2}$$

Inverting summer



Differential amplifier

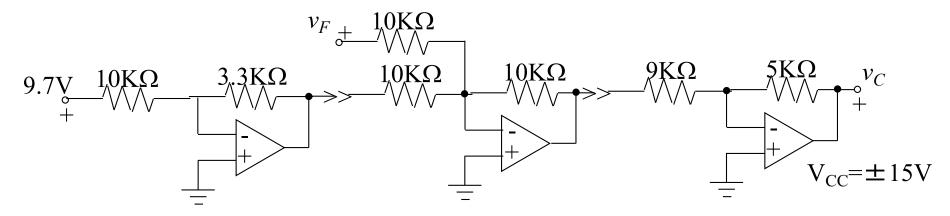
T&R, 5th ed, Example 4-16: OpAmp Lego



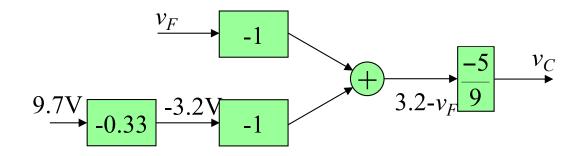
So what does this circuit do?

120

Example 4-16: OpAmp Lego



So what does this circuit do?



It converts tens of oF to tens of oC

Max current drawn by each stage is 1.5mA

121

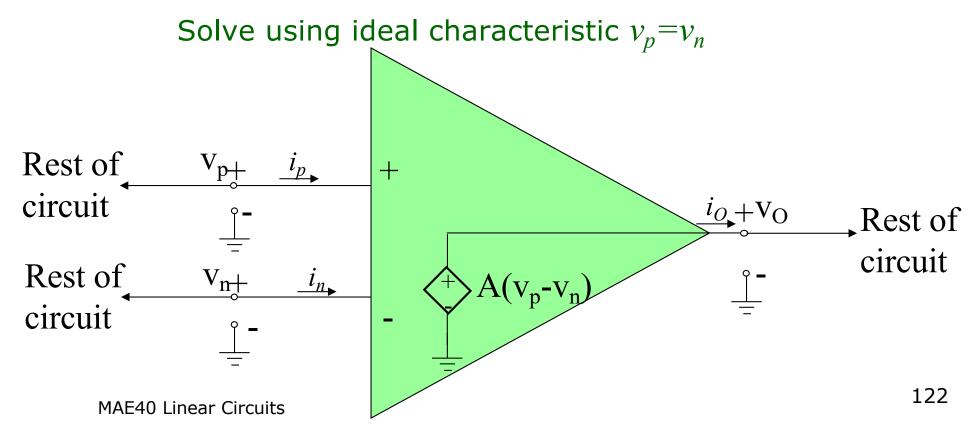
OpAmp Cct Analysis

What if circuit is not simple interconnection of basic building blocks? OpAmp Nodal Analysis

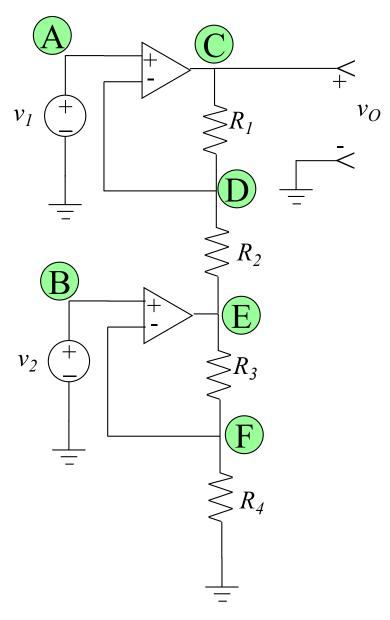
Use dependent voltage source model

Identify node voltages

Formulate input node equations



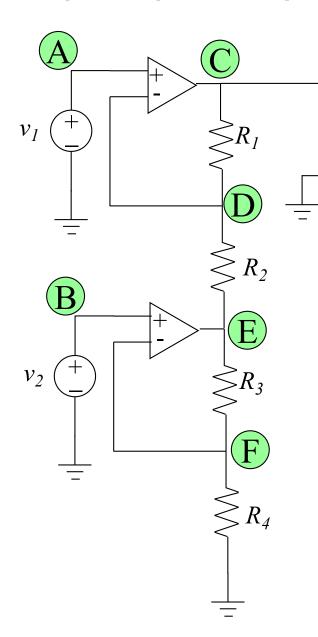
OpAmp Analysis – T&R, 5th ed, Example 4-18



MAE40 Linear Circuits

OpAmp Analysis – T&R, 5th ed, Example 4-18

 v_{O}



Seemingly six non-reference nodes: A-E

Nodes A, B: connect to reference voltages v_1 and v_2

Node C, E: connected to OpAmp outputs (forget for the moment)

Node D:
$$(G_1 + G_2)v_D - G_1v_C - G_2v_E = 0$$

Node F:
$$(G_3 + G_4)v_F - G_3v_E = 0$$

OpAmp constraints

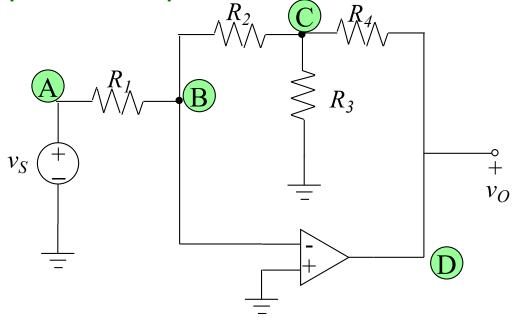
$$v_{A} = v_{1} = v_{D}, \ v_{B} = v_{2} = v_{F}$$

$$G_{1}v_{C} + G_{2}v_{E} = (G_{1} + G_{2})v_{1}$$

$$G_{3}v_{E} = (G_{3} + G_{4})v_{2}$$

$$v_{O} = v_{C} = \left[\frac{G_{1} + G_{2}}{G_{1}}\right]v_{1} - \frac{G_{2}}{G_{1}}\left[\frac{G_{3} + G_{4}}{G_{3}}\right]v_{2}$$
124

OpAmp Analysis – T&R, 5th ed, Exercise 4-14



OpAmp Analysis - T&R, 5th ed, Exercise 4-14

Node A: $v_A = v_S$

Node B:

$$(G_1+G_2)v_B-G_1v_A-G_2v_C=0$$

Node C:

$$(G_2+G_3+G_4)v_C-G_2v_B-G_4v_D=0$$

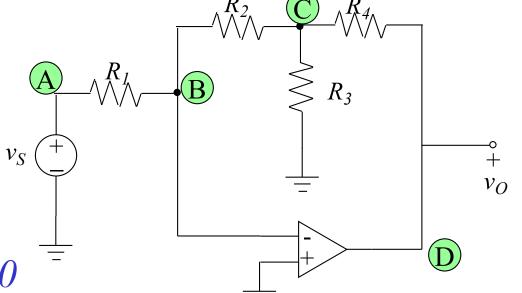
Constraints

$$v_B = v_p = v_n = 0$$
Solve
$$v_C = -\frac{G_1}{G_2}v_S$$

 $v_O = v_D$

$$v_{O} = \frac{(G_{2} + G_{3} + G_{4}) \cdot -G_{1}}{G_{4}} v_{S}$$

$$= -\frac{(R_{2}R_{3} + R_{2}R_{4} + R_{3}R_{4})}{R_{1}R_{3}} v_{S}$$



OpAmp Circuit Design – the whole point

Given an input-output relationship design a cct to implement it Build a cct to implement $v_0=5v_1+10v_2+20v_3$

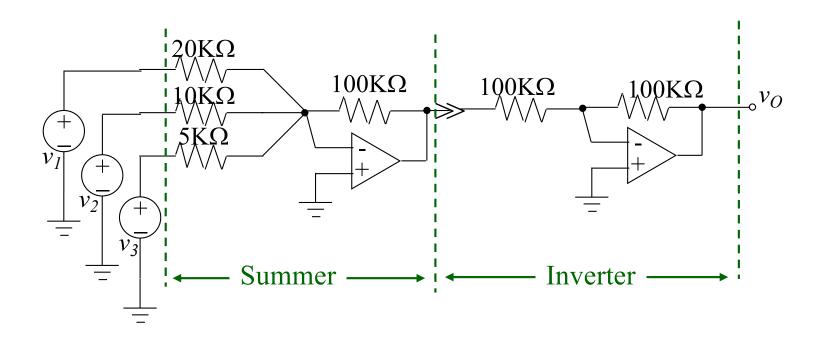
MAE40 Linear Circuits 127

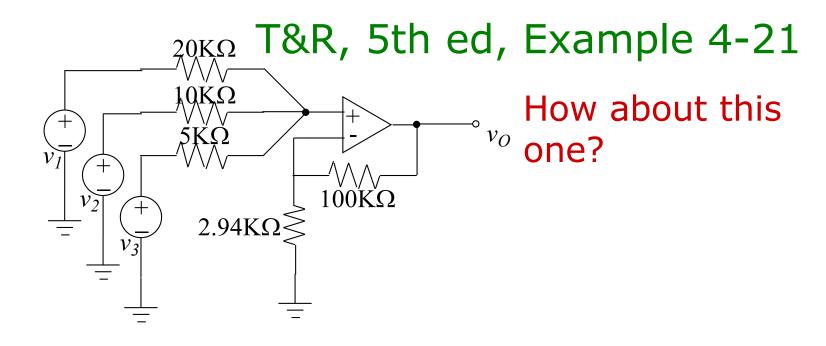
OpAmp Circuit Design – the whole point

Given an input-output relationship design a cct to implement it

Build a cct to implement $v_0 = 5v_1 + 10v_2 + 20v_3$

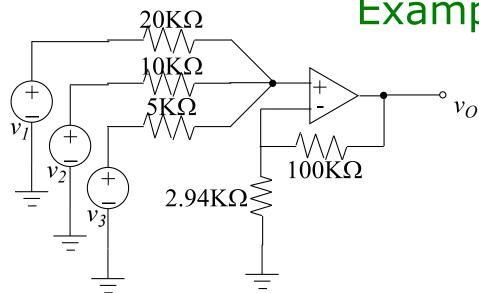
Inverting summer followed by an inverter





MAE40 Linear Circuits

Example 4-21



How about this one?

Non-inverting amp $v_p \rightarrow v_O$

$$v_O = Kv_p = \frac{100 \ 10^3 + 2.94 \ 10^3}{2.94 \ 10^3} v_p = 35v_p$$

KCL at p-node with $i_p = 0$

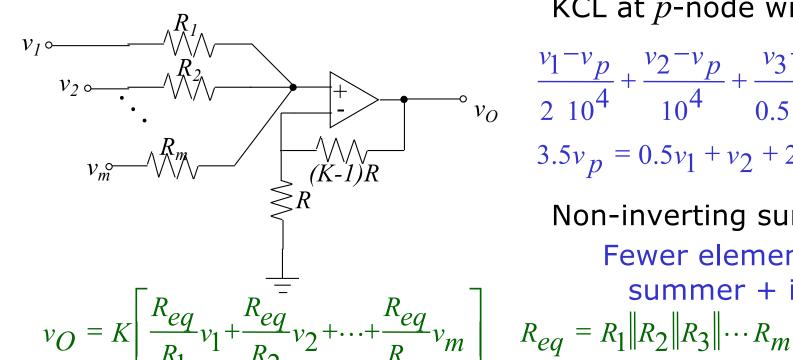
$$\frac{v_1^{-v}p}{2 \cdot 10^4} + \frac{v_2^{-v}p}{10^4} + \frac{v_3^{-v}p}{0.5 \cdot 10^4} = 0$$

$$3.5v_p = 0.5v_1 + v_2 + 2v_3$$

Non-inverting summer

Fewer elements than invsummer + inverter

$$R_{eq} = R_1 \| R_2 \| R_3 \| \cdots R_m$$



Comparators – A Nonlinear OpAmp Circuit

We have used the ideal OpAmp conditions for the analysis of OpAmps in the linear regime

$$v_n = v_p$$
, $i_n = i_p = 0$ if $A|v_p - v_n| \le V_{CC}$

What about if we operate with $v_p \neq v_n$?

That is, we operate outside the linear regime. We saturate!!

$$v_O = +V_{CC}$$
 if $v_p > v_n$
 $v_O = -V_{CC}$ if $v_p < v_n$

Without feedback, OpAmp acts as a comparator

- one of the terminal inputs, say v_n , is a sensor signal
- other terminal v_p is a threshold voltage
- value of the sensor signal can flip v_{out} between $+V_{cc}$ and $-V_{cc}$

Sensor resolution

Sensor resolution is the smallest increment a system can display or measure

Related to number of significant digits on a sensor readout

This scale has resolution of 0.1 grams

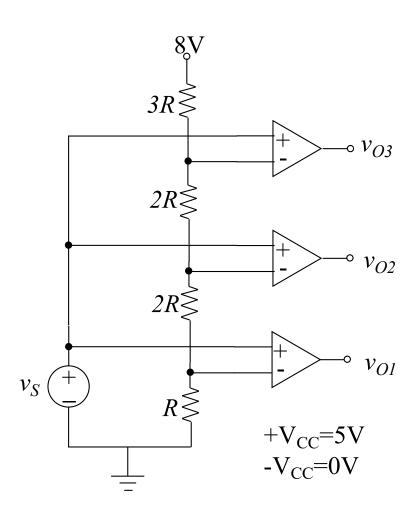
Sensor accuracy is how close a measured value is to the true quantity of what is being measured.

Resolution: with +Vcc = 5V and -Vcc = 0V, then v_o is 0 or 5V

Computers' logic is binary (0/1's), so we can use: 0V => Logical 0 and 5V => Logical 1

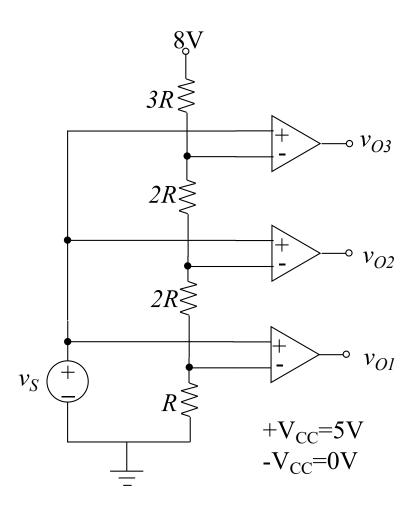
This is a very low resolution: can we do better?

"Analog-to-digital converter" - comparators



MAE40 Linear Circuits

"Analog-to-digital converter" - comparators



Current laws still work

$$i_p = i_n = 0$$

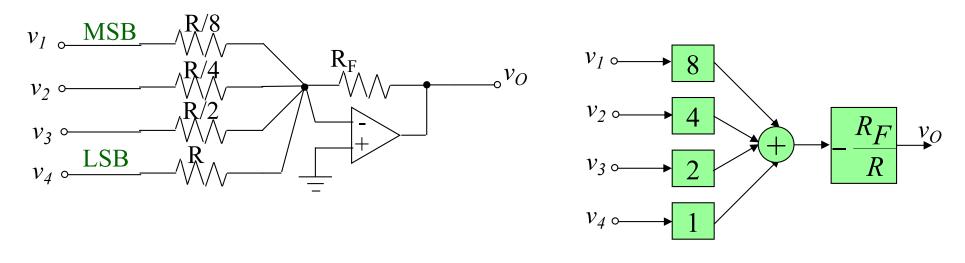
Parallel comparison

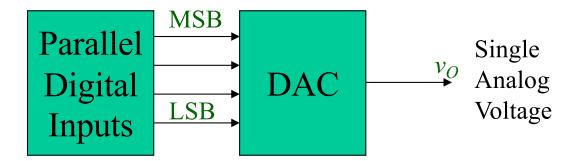
Flash converter "3-bit" output

Not really how it is done Voltage divider switched

Input	v _{O1}	V _{O2}	V _{O3}
$1>v_{\rm S}$	0	0	0
$3>_{V_S}>1$	5	0	0
5>v _S >3	5	5	0
$v_S > 5$	5	5	5

Digital-to-analog converter





Conversion of digital data to analog voltage value

Bit inputs = 0 or 5V

Analog output varies between v_{min} and v_{max} in 16 steps

Signal Conditioning

Your most likely brush with OpAmps in practice

Signal – typically a voltage representing a physical variable

Temperature, strain, speed, pressure

Digital analysis – done on a computer after

Anti-aliasing filtering – data interpretation

Adding/subtracting an offset - zeroing

Normally zero of ADC is 0V

Scaling for full scale variation – quantization

Normally full scale of ADC is 5V

Analog-to-digital conversion – ADC

Maybe after a few more tricks like track and hold

Offset correction: use a summing OpAmp

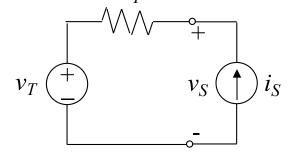
Scaling: use an OpAmp amplifier

Anti-aliasing filter: use a dynamic OpAmp cct

Thévenin and Norton for dependent sources

Cannot turn off the ICSs and IVSs to do the analysis
This would turn off DCSs and DVSs

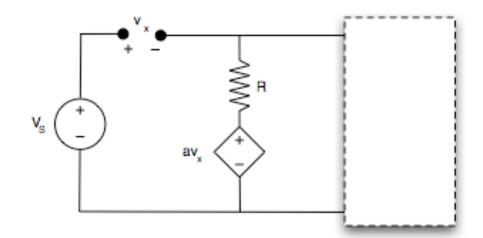
Connect an independent CS or VS to the terminal and compute the resulting voltage or current and its dependence on the source R_T



Compute v_S in response to i_S : $v_S = v_T + i_S R_T$

Or just compute the open-circuit voltage and the short-circuit current

Thévenin and Norton for dependent sources



Thevenin resistance

$$R_{T} = \frac{v_{oc}}{i_{sc}} = \frac{1}{1+a}R$$

Thevenin equivalent circuit?

Open-circuit voltage

$$\begin{cases} v_{oc} = v_s - v_x \\ v_{oc} = v_R + av_x = av_x \end{cases} \implies v_T = v_{oc} = \frac{a}{1+a}v_s$$

Short-circuit current

$$\begin{cases}
0 = v_s - v_x \\
0 = -Ri_{sc} + av_x
\end{cases} \implies i_{sc} = \frac{a}{R}v_s$$

What would instead be the resistance obtained by turning off IVS?

Where to now?

Where have we been?

Nodal and mesh analysis

Thévenin and Norton equivalence

Dependent sources and active cct models

OpAmps and resistive linear active cct design

Where to now?

Capacitors and inductors (Ch.6)

Laplace Transforms and their use for ODEs and ccts (Ch.9)

s-domain cct design and analysis (Ch.10)

Frequency response (Ch.12) and filter design (Ch.14)

We will depart from the book more during this phase